The tutorial is a collection of many other resources and my own notes

Overview
# TOC

Before reading
the tutorial is a collection of many other resources and my own notes. Note that the ref if any in the tutorial means the whole passage. And part to be referred if any means the part has been summarized or detailed by me. Feel free to click the [the part to be referred] to read the original.

CTC_pytorch

1. Why we need CTC? ---> looking back on history

Feel free to skip it if you already know the purpose of CTC coming into being.

1.1. About CRNN

We need to learn CRNN because in the context we need an output to be a sequence.

ref: the overview from CRNN to CTC !! highly recommended !!

part to be referred

multi-digit sequence recognition

  • Characted-based
  • word-based
  • sequence-to-sequence
  • CRNN = CNN + RNN
    • CNN --> relationship between pixel
    • (the small fonts) Specifially, each feature vec of a feature seq is generated from left to right on the feature maps. That means the i-th feature vec is the concatenation of the columns of all the maps. So the shape of the tensor can be reshaped as e.g. (batch_size, 32, 256)

image1



1.2. from Cross Entropy Loss to CTC Loss

Usually, CE is applied to compute loss as the following way. And gt(also target) can be encoded as a stable matrix or vector.

image2

However, in OCR or audio recognition, each target input/gt has various forms. e.g. "I like to play piano" can be unpredictable in handwriting.

image3

Some stroke is longer than expected. Others are short.
Assume that the above example is encoded as number sequence [5, 3, 8, 3, 0].

image4

  • Tips: blank(the blue box symbol here) is introduced because we allow the model to predict a blank label due to unsureness or the end comes, which is similar with human when we are not pretty sure to make a good prediction. ref:lihongyi lecture starting from 3:45

Therefore, we see that this is an one-to-many question where e.g. "I like to play piano" has many target forms. But we not just have one sequence. We might also have other sequence e.g. "I love you", "Not only you but also I like apple" etc, none of which have a same sentence length. And this is what cross entropy cannot achieve in one batch. But now we can encode all sequences/sentences into a new sequence with a max length of all sequences.

e.g.
"I love you" --> len = 10
"How are you" --> len = 11
"what's your name" --> len = 16

In this context the input_length should be >= 16.

For dealing with the expanded targets, CTC is introduced by using the ideas of (1) HMM forward algorithm and (2) dynamic programing.

2. Details about CTC

2.1. intuition: forward algorithm

image5

image6

Tips: the reason we have - inserted between each two token is because, for each moment/horizontal(Note) position we allow the model to predict a blank representing unsureness.

Note that moment is for audio recognition analogue. horizontal position is for OCR analogue.



2.2. implementation: forward algorithm with dynamic programming

the complete code is CTC.py

given 3 samples, they are
"orange" :[15, 18, 1, 14, 7, 5]    len = 6
"apple" :[1, 16, 16, 12, 5]    len = 5
"watermelon" :[[23, 1, 20, 5, 18, 13, 5, 12, 15, 14]  len = 10

{0:blank, 1:A, 2:B, ... 26:Z}

2.2.1. dummy input ---> what the input looks like

# ------------ a dummy input ----------------
log_probs = torch.randn(15, 3, 27).log_softmax(2).detach().requires_grad_()# 15:input_length  3:batchsize  27:num of token(class)
# targets = torch.randint(0, 27, (3, 10), dtype=torch.long)
targets = torch.tensor([[15, 18, 1,  14, 7, 5,  0, 0,  0,  0],
                        [1,  16, 16, 12, 5, 0,  0, 0,  0,  0],
                        [23, 1,  20, 5, 18, 13, 5, 12, 15, 14]]
                        )

# assume that the prediction vary within 15 input_length.But the target length is still the true length.
""" 
e.g. [a,0,0,0,p,0,p,p,p, ...l,e] is one of the prediction
 """
input_lengths = torch.full((3,), 15, dtype=torch.long)
target_lengths = torch.tensor([6,5,10], dtype = torch.long)



2.2.2. expand the target ---> what the target matrix look like

Recall that one target can be encoded in many different forms. So we introduce a targets mat to represent it as follows.

"-d-o-g-" ">
target_prime = targets.new_full((2 * target_length + 1,), blank) # create a targets_prime full of zero

target_prime[1::2] = targets[i, :target_length] # equivalent to insert blanks in targets. e.g. targets = "dog" --> "-d-o-g-"

Now we got target_prime(also expanded target) for e.g. "apple"
target_prime is
tensor([ 0, 1, 0, 16, 0, 16, 0, 12, 0, 5, 0]) which is visualized as the red part(also t1)

image7

Note that the t8 is only for illustration. In the example, the width of target matrix should be 15(input_length).

probs = log_probs[:input_length, i].exp()

Then we convert original inputs from log-space like this, referring to "In practice, the above recursion ..." in original paper https://www.cs.toronto.edu/~graves/icml_2006.pdf

2.3. Alpha Matrix

image8

# alpha matrix init at t1 indicated by purple boxes.
alpha_col = log_probs.new_zeros((target_length * 2 + 1,))
alpha_col[0] = probs[0, blank] # refers to green box
alpha_col[1] = probs[0, target_prime[1]]
  • blank is the index of blank(here it's 0)
  • target_prime[1] refers to the 1-st index of the token. e.g. "apple": "a", "orange": "o"

2.4. Dynamic programming based on 3 conditions

refer to the details in CTC.py

reference:

Owner
手写AI
手写AI
Pydocstringformatter - A tool to automatically format Python docstrings that tries to follow recommendations from PEP 8 and PEP 257.

Pydocstringformatter A tool to automatically format Python docstrings that tries to follow recommendations from PEP 8 and PEP 257. See What it does fo

Daniël van Noord 31 Dec 29, 2022
YAML metadata extension for Python-Markdown

YAML metadata extension for Python-Markdown This extension adds YAML meta data handling to markdown with all YAML features. As in the original, metada

Nikita Sivakov 14 Dec 30, 2022
Projeto em Python colaborativo para o Bootcamp de Dados do Itaú em parceria com a Lets Code

🧾 lets-code-todo-list por Henrique V. Domingues e Josué Montalvão Projeto em Python colaborativo para o Bootcamp de Dados do Itaú em parceria com a L

Henrique V. Domingues 1 Jan 11, 2022
This program has been coded to allow the user to rename all the files in the entered folder.

Bulk_File_Renamer This program has been coded to allow the user to rename all the files in the entered folder. The only required package is "termcolor

1 Jan 06, 2022
Fastest Git client for Emacs.

EAF Git Client EAF Git is git client application for the Emacs Application Framework. The advantages of EAF Git are: Large log browse: support 1 milli

Emacs Application Framework 31 Dec 02, 2022
Python code for working with NFL play by play data.

nfl_data_py nfl_data_py is a Python library for interacting with NFL data sourced from nflfastR, nfldata, dynastyprocess, and Draft Scout. Includes im

82 Jan 05, 2023
PyPresent - create slide presentations from notes

PyPresent Create slide presentations from notes Add some formatting to text file

1 Jan 06, 2022
My solutions to the Advent of Code 2021 problems in Go and Python 🎄

🎄 Advent of Code 2021 🎄 Summary Advent of Code is an annual Advent calendar of programming puzzles. This year I am doing it in Go and Python. Runnin

Orfeas Antoniou 16 Jun 16, 2022
MkDocs Plugin allowing your visitors to *File > Print > Save as PDF* the entire site.

mkdocs-print-site-plugin MkDocs plugin that adds a page to your site combining all pages, allowing your site visitors to File Print Save as PDF th

Tim Vink 67 Jan 04, 2023
Jupyter Notebooks as Markdown Documents, Julia, Python or R scripts

Have you always wished Jupyter notebooks were plain text documents? Wished you could edit them in your favorite IDE? And get clear and meaningful diff

Marc Wouts 5.7k Jan 04, 2023
Hjson for Python

hjson-py Hjson, a user interface for JSON Hjson works with Python 2.5+ and Python 3.3+ The Python implementation of Hjson is based on simplejson. For

Hjson 185 Dec 13, 2022
✨ Real-life Data Analysis and Model Training Workshop by Global AI Hub.

🎓 Data Analysis and Model Training Course by Global AI Hub Syllabus: Day 1 What is Data? Multimedia Structured and Unstructured Data Data Types Data

Global AI Hub 71 Oct 28, 2022
Numpy's Sphinx extensions

numpydoc -- Numpy's Sphinx extensions This package provides the numpydoc Sphinx extension for handling docstrings formatted according to the NumPy doc

NumPy 234 Dec 26, 2022
Exercism exercises in Python.

Exercism exercises in Python.

Exercism 1.3k Jan 04, 2023
Software engineering course project. Secondhand trading system.

PigeonSale Software engineering course project. Secondhand trading system. Documentation API doumenatation: list of APIs Backend documentation: notes

Harry Lee 1 Sep 01, 2022
Source Code for 'Practical Python Projects' (video) by Sunil Gupta

Apress Source Code This repository accompanies %Practical Python Projects by Sunil Gupta (Apress, 2021). Download the files as a zip using the green b

Apress 2 Jun 01, 2022
Type hints support for the Sphinx autodoc extension

sphinx-autodoc-typehints This extension allows you to use Python 3 annotations for documenting acceptable argument types and return value types of fun

Alex Grönholm 462 Dec 29, 2022
Tutorial for STARKs with supporting code in python

stark-anatomy STARK tutorial with supporting code in python Outline: introduction overview of STARKs basic tools -- algebra and polynomials FRI low de

121 Jan 03, 2023
Testing-crud-login-drf - Creation of an application in django on music albums

testing-crud-login-drf Creation of an application in django on music albums Befo

Juan 1 Jan 11, 2022
Material for the ros2 crash course

Material for the ros2 crash course

Emmanuel Dean 1 Jan 22, 2022