Distance Encoding for GNN Design

Overview

Distance-encoding for GNN design

This repository is the official PyTorch implementation of the DEGNN and DEAGNN framework reported in the paper:
Distance-Encoding -- Design Provably More PowerfulGNNs for Structural Representation Learning, to appear in NeurIPS 2020.

The project's home page is: http://snap.stanford.edu/distance-encoding/

Authors & Contact

Pan Li, Yanbang Wang, Hongwei Wang, Jure Leskovec

Questions on this repo can be emailed to [email protected] (Yanbang Wang)

Installation

Requirements: Python >= 3.5, Anaconda3

  • Update conda:
conda update -n base -c defaults conda
  • Install basic dependencies to virtual environment and activate it:
conda env create -f environment.yml
conda activate degnn-env
  • Install PyTorch >= 1.4.0 and torch-geometric >= 1.5.0 (please refer to the PyTorch and PyTorch Geometric official websites for more details). Commands examples are:
conda install pytorch=1.4.0 torchvision cudatoolkit=10.1 -c pytorch
pip install torch-scatter==latest+cu101 -f https://pytorch-geometric.com/whl/torch-1.4.0.html
pip install torch-sparse==latest+cu101 -f https://pytorch-geometric.com/whl/torch-1.4.0.html
pip install torch-cluster==latest+cu101 -f https://pytorch-geometric.com/whl/torch-1.4.0.html
pip install torch-spline-conv==latest+cu101 -f https://pytorch-geometric.com/whl/torch-1.4.0.html
pip install torch-geometric

The latest tested combination is: Python 3.8.2 + Pytorch 1.4.0 + torch-geometric 1.5.0.

Quick Start

python main.py --dataset celegans --feature sp --hidden_features 100 --prop_depth 1 --test_ratio 0.1 --epoch 300

    This uses 100-dimensional hidden features, 80/10/10 split of train/val/test set, and trains for 300 epochs.

  • To train DEAGNN-SPD for Task 3 (node-triads prediction) on C.elegans dataset:
python main.py --dataset celegans_tri --hidden_features 100 --prop_depth 2 --epoch 300 --feature sp --max_sp 5 --l2 1e-3 --test_ratio 0.1 --seed 9

    This enables 2-hop propagation per layer, truncates distance encoding at 5, and uses random seed 9.

  • To train DEGNN-LP (i.e. the random walk variant) for Task 1 (node-level prediction) on usa-airports using average accuracy as evaluation metric:
python main.py --dataset usa-airports --metric acc --hidden_features 100 --feature rw --rw_depth 2 --epoch 500 --bs 128 --test_ratio 0.1

Note that here the test_ratio currently contains both validation set and the actual test set, and will be changed to contain only test set.

  • To generate Figure2 LEFT of the paper (Simulation to validate Theorem 3.3):
python main.py --dataset simulation --max_sp 10

    The result will be plot to ./simulation_results.png.

  • All detailed training logs can be found at <log_dir>/<dataset>/<training-time>.log. A one-line summary will also be appended to <log_dir>/result_summary.log for each training instance.

Usage Summary

Interface for DE-GNN framework [-h] [--dataset DATASET] [--test_ratio TEST_RATIO]
                                      [--model {DE-GNN,GIN,GCN,GraphSAGE,GAT}] [--layers LAYERS]
                                      [--hidden_features HIDDEN_FEATURES] [--metric {acc,auc}] [--seed SEED] [--gpu GPU]
                                      [--data_usage DATA_USAGE] [--directed DIRECTED] [--parallel] [--prop_depth PROP_DEPTH]
                                      [--use_degree USE_DEGREE] [--use_attributes USE_ATTRIBUTES] [--feature FEATURE]
                                      [--rw_depth RW_DEPTH] [--max_sp MAX_SP] [--epoch EPOCH] [--bs BS] [--lr LR]
                                      [--optimizer OPTIMIZER] [--l2 L2] [--dropout DROPOUT] [--k K] [--n [N [N ...]]]
                                      [--N N] [--T T] [--log_dir LOG_DIR] [--summary_file SUMMARY_FILE] [--debug]

Optinal Arguments

  -h, --help            show this help message and exit
  
  # general settings
  --dataset DATASET     dataset name
  --test_ratio TEST_RATIO
                        ratio of the test against whole
  --model {DE-GCN,GIN,GAT,GCN,GraphSAGE}
                        model to use
  --layers LAYERS       largest number of layers
  --hidden_features HIDDEN_FEATURES
                        hidden dimension
  --metric {acc,auc}    metric for evaluating performance
  --seed SEED           seed to initialize all the random modules
  --gpu GPU             gpu id
  --adj_norm {asym,sym,None}
                        how to normalize adj
  --data_usage DATA_USAGE
                        use partial dataset
  --directed DIRECTED   (Currently unavailable) whether to treat the graph as directed
  --parallel            (Currently unavailable) whether to use multi cpu cores to prepare data
  
  # positional encoding settings
  --prop_depth PROP_DEPTH
                        propagation depth (number of hops) for one layer
  --use_degree USE_DEGREE
                        whether to use node degree as the initial feature
  --use_attributes USE_ATTRIBUTES
                        whether to use node attributes as the initial feature
  --feature FEATURE     distance encoding category: shortest path or random walk (landing probabilities)
  --rw_depth RW_DEPTH   random walk steps
  --max_sp MAX_SP       maximum distance to be encoded for shortest path feature
  
  # training settings
  --epoch EPOCH         number of epochs to train
  --bs BS               minibatch size
  --lr LR               learning rate
  --optimizer OPTIMIZER
                        optimizer to use
  --l2 L2               l2 regularization weight
  --dropout DROPOUT     dropout rate
  
  # imulation settings (valid only when dataset == 'simulation')
  --k K                 node degree (k) or synthetic k-regular graph
  --n [N [N ...]]       a list of number of nodes in each connected k-regular subgraph
  --N N                 total number of nodes in simultation
  --T T                 largest number of layers to be tested
  
  # logging
  --log_dir LOG_DIR     log directory
  --summary_file SUMMARY_FILE
                        brief summary of training result
  --debug               whether to use debug mode

Reference

If you make use of the code/experiment of Distance-encoding in your work, please cite our paper:

@article{li2020distance,
  title={Distance Encoding: Design Provably More Powerful Neural Networks for Graph Representation Learning},
  author={Li, Pan and Wang, Yanbang and Wang, Hongwei and Leskovec, Jure},
  journal={Advances in Neural Information Processing Systems},
  volume={33},
  year={2020}
}
AirPose: Multi-View Fusion Network for Aerial 3D Human Pose and Shape Estimation

AirPose AirPose: Multi-View Fusion Network for Aerial 3D Human Pose and Shape Estimation Check the teaser video This repository contains the code of A

Robot Perception Group 41 Dec 05, 2022
(CVPR 2022) A minimalistic mapless end-to-end stack for joint perception, prediction, planning and control for self driving.

LAV Learning from All Vehicles Dian Chen, Philipp Krähenbühl CVPR 2022 (also arXiV 2203.11934) This repo contains code for paper Learning from all veh

Dian Chen 300 Dec 15, 2022
[NeurIPS 2021] Well-tuned Simple Nets Excel on Tabular Datasets

[NeurIPS 2021] Well-tuned Simple Nets Excel on Tabular Datasets Introduction This repo contains the source code accompanying the paper: Well-tuned Sim

52 Jan 04, 2023
Python implementation of Wu et al (2018)'s registration fusion

reg-fusion Projection of a central sulcus probability map using the RF-ANTs approach (right hemisphere shown). This is a Python implementation of Wu e

Dan Gale 26 Nov 12, 2021
SMIS - Semantically Multi-modal Image Synthesis(CVPR 2020)

Semantically Multi-modal Image Synthesis Project page / Paper / Demo Semantically Multi-modal Image Synthesis(CVPR2020). Zhen Zhu, Zhiliang Xu, Anshen

316 Dec 01, 2022
Official Repository for "Robust On-Policy Data Collection for Data Efficient Policy Evaluation" (NeurIPS 2021 Workshop on OfflineRL).

Robust On-Policy Data Collection for Data-Efficient Policy Evaluation Source code of Robust On-Policy Data Collection for Data-Efficient Policy Evalua

Autonomous Agents Research Group (University of Edinburgh) 2 Oct 09, 2022
Pytorch-3dunet - 3D U-Net model for volumetric semantic segmentation written in pytorch

pytorch-3dunet PyTorch implementation 3D U-Net and its variants: Standard 3D U-Net based on 3D U-Net: Learning Dense Volumetric Segmentation from Spar

Adrian Wolny 1.3k Dec 28, 2022
RealTime Emotion Recognizer for Machine Learning Study Jam's demo

Emotion recognizer Table of contents Clone project Dataset Install dependencies Main program Demo 1. Clone project git clone https://github.com/GDSC20

Google Developer Student Club - UIT 1 Oct 05, 2021
Simple PyTorch hierarchical models.

A python package adding basic hierarchal networks in pytorch for classification tasks. It implements a simple hierarchal network structure based on feed-backward outputs.

Rajiv Sarvepalli 5 Mar 06, 2022
[NeurIPS 2021] “Improving Contrastive Learning on Imbalanced Data via Open-World Sampling”,

Improving Contrastive Learning on Imbalanced Data via Open-World Sampling Introduction Contrastive learning approaches have achieved great success in

VITA 24 Dec 17, 2022
S-attack library. Official implementation of two papers "Are socially-aware trajectory prediction models really socially-aware?" and "Vehicle trajectory prediction works, but not everywhere".

S-attack library: A library for evaluating trajectory prediction models This library contains two research projects to assess the trajectory predictio

VITA lab at EPFL 71 Jan 04, 2023
Human segmentation models, training/inference code, and trained weights, implemented in PyTorch

Human-Segmentation-PyTorch Human segmentation models, training/inference code, and trained weights, implemented in PyTorch. Supported networks UNet: b

Thuy Ng 474 Dec 19, 2022
CoMoGAN: continuous model-guided image-to-image translation. CVPR 2021 oral.

CoMoGAN: Continuous Model-guided Image-to-Image Translation Official repository. Paper CoMoGAN: continuous model-guided image-to-image translation [ar

166 Dec 31, 2022
codes for IKM (arXiv2021, Submitted to IEEE Trans)

Image-specific Convolutional Kernel Modulation for Single Image Super-resolution This repository is for IKM introduced in the following paper Yuanfei

Yuanfei Huang 9 Dec 29, 2022
A Library for Modelling Probabilistic Hierarchical Graphical Models in PyTorch

A Library for Modelling Probabilistic Hierarchical Graphical Models in PyTorch

Korbinian Pöppel 47 Nov 28, 2022
A series of convenience functions to make basic image processing operations such as translation, rotation, resizing, skeletonization, and displaying Matplotlib images easier with OpenCV and Python.

imutils A series of convenience functions to make basic image processing functions such as translation, rotation, resizing, skeletonization, and displ

Adrian Rosebrock 4.3k Jan 08, 2023
Sibur challange 2021 competition - 6 place

sibur challange 2021 Решение на 6 место: https://sibur.ai-community.com/competitions/5/tasks/13 Скор 1.4066/1.4159 public/private. Архитектура - однос

Ivan 5 Jan 11, 2022
Official code release for: EditGAN: High-Precision Semantic Image Editing

Official code release for: EditGAN: High-Precision Semantic Image Editing

565 Jan 05, 2023
Convolutional Neural Network for 3D meshes in PyTorch

MeshCNN in PyTorch SIGGRAPH 2019 [Paper] [Project Page] MeshCNN is a general-purpose deep neural network for 3D triangular meshes, which can be used f

Rana Hanocka 1.4k Jan 04, 2023
Exploration-Exploitation Dilemma Solving Methods

Exploration-Exploitation Dilemma Solving Methods Medium article for this repo - HERE In ths repo I implemented two techniques for tackling mentioned t

Aman Mishra 6 Jan 25, 2022