Weakly-Supervised Semantic Segmentation Network with Deep Seeded Region Growing (CVPR 2018).

Overview

Weakly-Supervised Semantic Segmentation Network with Deep Seeded Region Growing (CVPR2018)

By Zilong Huang, Xinggang Wang, Jiasi Wang, Wenyu Liu and Jingdong Wang.

This code is a implementation of the weakly-supervised semantic segmentation experiments in the paper DSRG. The code is developed based on the Caffe framework.

Introduction

Overview of DSRG Overview of the proposed approach. The Deep Seeded Region Growing module takes the seed cues and segmentation map as input to produces latent pixel-wise supervision which is more accurate and more complete than seed cues. Our method iterates between refining pixel-wise supervision and optimizing the parameters of a segmentation network.

License

DSRG is released under the MIT License (refer to the LICENSE file for details).

Citing DSRG

If you find DSRG useful in your research, please consider citing:

@inproceedings{huang2018dsrg,
    title={Weakly-Supervised Semantic Segmentation Network with Deep Seeded Region Growing},
    author={Huang, Zilong and Wang, Xinggang and Wang, Jiasi and Liu, Wenyu and Wang, Jingdong},
    booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
    pages={7014--7023},
    year={2018}
}

Installing dependencies

  • Python packages:
      $ pip install -r python-dependencies.txt
  • caffe (deeplabv2 version): deeplabv2 caffe installation instructions are available at https://bitbucket.org/aquariusjay/deeplab-public-ver2. Note, you need to compile caffe with python wrapper and support for python layers. Then add the caffe python path into training/tools/findcaffe.py.

  • Fully connected CRF wrapper (requires the Eigen3 package).

      $ pip install CRF/

Training the DSRG model

  • Go into the training directory:
      $ cd training
      $ mkdir localization_cues
  • Download the initial VGG16 model pretrained on Imagenet and put it in training/ folder.

  • Download CAM seed and put it in training/localization_cues folder. We use CAM for localizing the foreground seed classes and utilize the saliency detection technology DRFI for localizing background seed. We provide the python interface to DRFI here for convenience if you want to generate the seed by yourself.

      $ cd training/experiment/seed_mc
      $ mkdir models
  • Set root_folder parameter in train-s.prototxt, train-f.prototxt and PASCAL_DIR in run-s.sh to the directory with PASCAL VOC 2012 images

  • Run:

      $ bash run.sh

The trained model will be created in models

Acknowledgment

This code is heavily borrowed from SEC.

Owner
Zilong Huang
HUSTer
Zilong Huang
Python-kafka-reset-consumergroup-offset-example - Python Kafka reset consumergroup offset example

Python Kafka reset consumergroup offset example This is a simple example of how

Willi Carlsen 1 Feb 16, 2022
Code for the paper "Generative design of breakwaters usign deep convolutional neural network as a surrogate model"

Generative design of breakwaters usign deep convolutional neural network as a surrogate model This repository contains the code for the paper "Generat

2 Apr 10, 2022
🍀 Pytorch implementation of various Attention Mechanisms, MLP, Re-parameter, Convolution, which is helpful to further understand papers.⭐⭐⭐

🍀 Pytorch implementation of various Attention Mechanisms, MLP, Re-parameter, Convolution, which is helpful to further understand papers.⭐⭐⭐

xmu-xiaoma66 7.7k Jan 05, 2023
Kinetics-Data-Preprocessing

Kinetics-Data-Preprocessing Kinetics-400 and Kinetics-600 are common video recognition datasets used by popular video understanding projects like Slow

Kaihua Tang 7 Oct 27, 2022
Sign Language Translation with Transformers (COLING'2020, ECCV'20 SLRTP Workshop)

transformer-slt This repository gathers data and code supporting the experiments in the paper Better Sign Language Translation with STMC-Transformer.

Kayo Yin 107 Dec 27, 2022
《Single Image Reflection Removal Beyond Linearity》(CVPR 2019)

Single-Image-Reflection-Removal-Beyond-Linearity Paper Single Image Reflection Removal Beyond Linearity. Qiang Wen, Yinjie Tan, Jing Qin, Wenxi Liu, G

Qiang Wen 51 Jun 24, 2022
What can linearized neural networks actually say about generalization?

What can linearized neural networks actually say about generalization? This is the source code to reproduce the experiments of the NeurIPS 2021 paper

gortizji 11 Dec 09, 2022
π-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis

π-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis Project Page | Paper | Data Eric Ryan Chan*, Marco Monteiro*, Pe

375 Dec 31, 2022
Contenido del curso Bases de datos del DCC PUC versión 2021-2

IIC2413 - Bases de Datos Tabla de contenidos Equipo Profesores Ayudantes Contenidos Calendario Evaluaciones Resumen de notas Foro Política de integrid

54 Nov 23, 2022
A set of tests for evaluating large-scale algorithms for Wasserstein-2 transport maps computation.

Continuous Wasserstein-2 Benchmark This is the official Python implementation of the NeurIPS 2021 paper Do Neural Optimal Transport Solvers Work? A Co

Alexander 22 Dec 12, 2022
AIR^2 for Interaction Prediction

This is the repository for AIR^2 for Interaction Prediction. Explanation of the solution: Video: link License AIR is released under the Apache 2.0 lic

21 Sep 27, 2022
Testbed of AI Systems Quality Management

qunomon Description A testbed for testing and managing AI system qualities. Demo Sorry. Not deployment public server at alpha version. Requirement Ins

AIST AIRC 15 Nov 27, 2021
Implementation of Gans

GAN Generative Adverserial Networks are an approach to generative data modelling using Deep learning methods. I have currently implemented : DCGAN on

Sibam Parida 5 Sep 07, 2021
Supporting code for short YouTube series Neural Networks Demystified.

Neural Networks Demystified Supporting iPython notebooks for the YouTube Series Neural Networks Demystified. I've included formulas, code, and the tex

Stephen 1.3k Dec 23, 2022
Dataset Condensation with Contrastive Signals

Dataset Condensation with Contrastive Signals This repository is the official implementation of Dataset Condensation with Contrastive Signals (DCC). T

3 May 19, 2022
nfelo: a power ranking, prediction, and betting model for the NFL

nfelo nfelo is a power ranking, prediction, and betting model for the NFL. Nfelo take's 538's Elo framework and further adapts it for the NFL, hence t

6 Nov 22, 2022
Julia package for contraction of tensor networks, based on the sweep line algorithm outlined in the paper General tensor network decoding of 2D Pauli codes

Julia package for contraction of tensor networks, based on the sweep line algorithm outlined in the paper General tensor network decoding of 2D Pauli codes

Christopher T. Chubb 35 Dec 21, 2022
A data-driven maritime port simulator

PySeidon - A Data-Driven Maritime Port Simulator 🌊 Extendable and modular software for maritime port simulation. This software uses entity-component

6 Apr 10, 2022
Code and models for ICCV2021 paper "Robust Object Detection via Instance-Level Temporal Cycle Confusion".

Robust Object Detection via Instance-Level Temporal Cycle Confusion This repo contains the implementation of the ICCV 2021 paper, Robust Object Detect

Xin Wang 69 Oct 13, 2022
The final project of "Applying AI to 2D Medical Imaging Data" of "AI for Healthcare" nanodegree - Udacity.

Pneumonia Detection from X-Rays Project Overview In this project, you will apply the skills that you have acquired in this 2D medical imaging course t

Omar Laham 1 Jan 14, 2022