This project deals with a simplified version of a more general problem of Aspect Based Sentiment Analysis.

Overview

Aspect_Based_Sentiment_Extraction

Created on: 5th Jan, 2022.

This project deals with an important field of Natural Lnaguage Processing - Aspect Based Sentiment Analysis (ABSA). But the problem statement here is rather a simplified version of the more general ABSA.
Aspect-Based Sentiment analysis is a type of text analysis that categorizes opinions by aspect and identifies the sentiment related to each aspect. Aspects are important words that are of importance to a business or organization, where they want to be able to provide their customers with insights on how their customers feel about these important words.
The general ABSA problem, which is an active area of machine learning research, is about finding all the possible aspects and the corresponding sentiments associated with those aspects in a given text or a document. For example, given a sentence like “I like apples very much, but I hate kiwi”, an ideal absa system should be able to identify aspects like apples and kiwi with correct sentiments of positive and negative respectively.
But here, in the problem statement that this project deals with, an aspect word/phrase is already given from the given text, which means that our problem is rather simplified and we don’t need to worry about the complex task of identifying aspects as well in the text, at least for this problem statement that I am dealing with. In future, I will be working with the more general version of this problem, where aspects are also needed to be indentified.


A brief description of approach

This article explores the use of a pre-trained language model, BERT (Bidirectional Encoder Representaton from Transformers), for the purpose of solving the aforementioned problem. BERT offers very robust contextual embeddings which are useful to solve the variety of problems. Therefore, the sole idea here is to explore the modelling capabilities of the BERT embeddings, by making use of the sentence pair input for the aspect sentiment prediction task. The model which I came up with was able to achieve 99.40% accuracy on the training data and 96.16% accuracy on the test data.

Instructions to run and test files

Clone this repository and navigate to the project folder:
git clone https://github.com/stardust-88/Aspect_Based_Sentiment_Extraction.git
cd Aspect_Based_sentiment_Extraction

To install the dependencies:
pip3 install -r requirements.txt

To train:
Navigate to the src folder and run the below command:
python train.py

For inference:
Navigate to the src folder and run the below command:
python inference.py

Instructions for using trained model weights

I have saved my trained weights to google drive and generated the link, which can be used to download the same. This can be done through below steps.

  1. Navigate to the the models directory.
  2. When inside the models directory, run the file download_model.py: python download_model.py

So, if the user wants to do the inference using pre-trained weights, first download the weights following above two steps, then then run the inference.py script.

Results from the model

  1. Accuracy curve:

  1. Loss curve:

  1. Classification report:

  1. Confusion matrix:

Owner
Naman Rastogi
An undergraduate in Computer Science and Engineering. Trying to discover fundamental patterns with machine learning.
Naman Rastogi
Kurumi ChatBot

KurumiChatBot Just another Telegram AI chat bot written in Python using Pyrogram. A public running instance can be found on telegram as @TokisakiChatB

Yoga Pranata 3 Jun 28, 2022
Visual Automata is a Python 3 library built as a wrapper for Caleb Evans' Automata library to add more visualization features.

Visual Automata Copyright 2021 Lewi Lie Uberg Released under the MIT license Visual Automata is a Python 3 library built as a wrapper for Caleb Evans'

Lewi Uberg 55 Nov 17, 2022
Lumped-element impedance calculator and frequency-domain plotter.

fastZ: Lumped-Element Impedance Calculator fastZ is a small tool for calculating and visualizing electrical impedance in Python. Features include: Sup

Wesley Hileman 47 Nov 18, 2022
100+ Chinese Word Vectors 上百种预训练中文词向量

Chinese Word Vectors 中文词向量 中文 This project provides 100+ Chinese Word Vectors (embeddings) trained with different representations (dense and sparse),

embedding 10.4k Jan 09, 2023
Refactored version of FastSpeech2

Refactored version of FastSpeech2. An implementation of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech"

ILJI CHOI 10 May 26, 2022
Code for PED: DETR For (Crowd) Pedestrian Detection

Code for PED: DETR For (Crowd) Pedestrian Detection

36 Sep 13, 2022
LeBenchmark: a reproducible framework for assessing SSL from speech

LeBenchmark: a reproducible framework for assessing SSL from speech

11 Nov 30, 2022
In this repository we have tested 3 VQA models on the ImageCLEF-2019 dataset.

Med-VQA In this repository we have tested 3 VQA models on the ImageCLEF-2019 dataset. Two of these are made on top of Facebook AI Reasearch's Multi-Mo

Kshitij Ambilduke 8 Apr 14, 2022
Codes to pre-train Japanese T5 models

t5-japanese Codes to pre-train a T5 (Text-to-Text Transfer Transformer) model pre-trained on Japanese web texts. The model is available at https://hug

Megagon Labs 37 Dec 25, 2022
Simple virtual assistant using pyttsx3 and speech recognition optionally with pywhatkit and pther libraries.

VirtualAssistant Simple virtual assistant using pyttsx3 and speech recognition optionally with pywhatkit and pther libraries. Third Party Libraries us

Logadheep 1 Nov 27, 2021
🤖 Basic Financial Chatbot with handoff ability built with Rasa

Financial Services Example Bot This is an example chatbot demonstrating how to build AI assistants for financial services and banking with Rasa. It in

Mohammad Javad Hossieni 4 Aug 10, 2022
SentimentArcs: a large ensemble of dozens of sentiment analysis models to analyze emotion in text over time

SentimentArcs - Emotion in Text An end-to-end pipeline based on Jupyter notebooks to detect, extract, process and anlayze emotion over time in text. E

jon_chun 14 Dec 19, 2022
Source code for CsiNet and CRNet using Fully Connected Layer-Shared feedback architecture.

FCS-applications Source code for CsiNet and CRNet using the Fully Connected Layer-Shared feedback architecture. Introduction This repository contains

Boyuan Zhang 4 Oct 07, 2022
An official repository for tutorials of Probabilistic Modelling and Reasoning (2021/2022) - a University of Edinburgh master's course.

PMR computer tutorials on HMMs (2021-2022) This is a repository for computer tutorials of Probabilistic Modelling and Reasoning (2021/2022) - a Univer

Vaidotas Šimkus 10 Dec 06, 2022
PyTorch implementation of convolutional neural networks-based text-to-speech synthesis models

Deepvoice3_pytorch PyTorch implementation of convolutional networks-based text-to-speech synthesis models: arXiv:1710.07654: Deep Voice 3: Scaling Tex

Ryuichi Yamamoto 1.8k Dec 30, 2022
Unsupervised Language Modeling at scale for robust sentiment classification

** DEPRECATED ** This repo has been deprecated. Please visit Megatron-LM for our up to date Large-scale unsupervised pretraining and finetuning code.

NVIDIA Corporation 1k Nov 17, 2022
🎐 a python library for doing approximate and phonetic matching of strings.

jellyfish Jellyfish is a python library for doing approximate and phonetic matching of strings. Written by James Turk James Turk 1.8k Dec 21, 2022

Toward Model Interpretability in Medical NLP

Toward Model Interpretability in Medical NLP LING380: Topics in Computational Linguistics Final Project James Cross ( 1 Mar 04, 2022

This library is testing the ethics of language models by using natural adversarial texts.

prompt2slip This library is testing the ethics of language models by using natural adversarial texts. This tool allows for short and simple code and v

9 Dec 28, 2021