pytorch bert intent classification and slot filling

Overview

pytorch_bert_intent_classification_and_slot_filling

基于pytorch的中文意图识别和槽位填充

说明

基本思路就是:分类+序列标注(命名实体识别)同时训练。 使用的预训练模型:hugging face上的chinese-bert-wwm-ext 依赖:

pytorch==1.6+
transformers==4.x+

运行指令:

python main.py

可在config.py里面修改相关的参数,训练、验证、测试、还有预测。

结果

意图识别:
accuracy:0.9767441860465116
precision:0.9767441860465116
recall:0.9767441860465116
f1:0.9767441860465116
              precision    recall  f1-score   support

           0       1.00      0.94      0.97        16
           2       1.00      1.00      1.00         1
           3       1.00      1.00      1.00         4
           4       1.00      1.00      1.00        16
           5       0.00      0.00      0.00         1
           6       1.00      1.00      1.00        22
           7       0.84      0.89      0.86        18
           8       0.98      0.95      0.96        57
           9       1.00      1.00      1.00         2
          10       0.00      0.00      0.00         0
          11       0.00      0.00      0.00         1
          12       0.98      0.99      0.99       327
          13       1.00      1.00      1.00         1
          14       1.00      1.00      1.00         3
          15       1.00      1.00      1.00         1
          17       1.00      1.00      1.00         4
          18       1.00      0.80      0.89         5
          19       1.00      1.00      1.00        14
          21       0.00      0.00      0.00         1
          22       1.00      1.00      1.00        13
          23       1.00      1.00      1.00         9

    accuracy                           0.98       516
   macro avg       0.80      0.79      0.79       516
weighted avg       0.97      0.98      0.97       516

槽位填充:
accuracy:0.9366942909760589
precision:0.8052708638360175
recall:0.8461538461538461
f1:0.8252063015753938
                   precision    recall  f1-score   support

             Dest       1.00      1.00      1.00         7
              Src       1.00      0.86      0.92         7
             area       1.00      0.25      0.40         4
           artist       0.89      1.00      0.94         8
       artistRole       1.00      1.00      1.00         2
           author       1.00      1.00      1.00        13
         category       0.73      0.90      0.81        42
             code       0.71      0.83      0.77         6
          content       0.89      0.94      0.91        17
    datetime_date       0.72      0.95      0.82        19
    datetime_time       0.58      0.64      0.61        11
         dishName       0.84      0.88      0.86        74
        dishNamet       0.00      0.00      0.00         1
          dynasty       1.00      1.00      1.00        11
      endLoc_area       0.00      0.00      0.00         2
      endLoc_city       0.96      1.00      0.98        43
       endLoc_poi       0.62      0.73      0.67        11
  endLoc_province       0.00      0.00      0.00         1
          episode       1.00      1.00      1.00         1
             film       0.00      0.00      0.00         1
       ingredient       0.53      0.62      0.57        16
          keyword       0.88      0.88      0.88        25
    location_area       0.00      0.00      0.00         2
    location_city       0.40      1.00      0.57         4
     location_poi       0.36      0.57      0.44         7
location_province       0.00      0.00      0.00         3
             name       0.80      0.88      0.84       182
       popularity       0.00      0.00      0.00         5
       queryField       1.00      1.00      1.00         2
     questionWord       0.00      0.00      0.00         1
         receiver       1.00      1.00      1.00         4
         relIssue       0.00      0.00      0.00         1
       scoreDescr       0.00      0.00      0.00         1
             song       0.86      0.80      0.83        15
   startDate_date       0.93      0.93      0.93        15
   startDate_time       0.00      0.00      0.00         1
    startLoc_area       0.00      0.00      0.00         1
    startLoc_city       0.95      0.97      0.96        38
     startLoc_poi       0.00      0.00      0.00         1
         subfocus       0.00      0.00      0.00         1
              tag       0.40      0.40      0.40         5
           target       1.00      1.00      1.00        12
     teleOperator       0.00      0.00      0.00         1
          theatre       0.50      0.50      0.50         2
        timeDescr       0.00      0.00      0.00         2
        tvchannel       0.74      0.81      0.77        21
        yesterday       0.00      0.00      0.00         1

        micro avg       0.81      0.85      0.83       650
        macro avg       0.52      0.54      0.52       650
     weighted avg       0.79      0.85      0.81       650

=================================
打开相机这
意图: LAUNCH
槽位: [('name', '相', 2, 2)]
=================================
=================================
国际象棋开局
意图: QUERY
槽位: [('name', '国际象棋', 0, 3)]
=================================
=================================
打开淘宝购物
意图: LAUNCH
槽位: [('name', '淘宝', 2, 3)]
=================================
=================================
搜狗
意图: LAUNCH
槽位: []
=================================
=================================
打开uc浏览器
意图: LAUNCH
槽位: [('name', 'uc浏', 2, 4)]
=================================
=================================
帮我打开人人
意图: LAUNCH
槽位: []
=================================
=================================
打开酷狗并随机播放
意图: LAUNCH
槽位: [('name', '酷狗', 2, 3)]
=================================
=================================
赶集
意图: LAUNCH
槽位: []
=================================
=================================
从合肥到上海可以到哪坐车?
意图: QUERY
槽位: [('Src', '合肥', 1, 2), ('Dest', '上海', 4, 5)]
=================================
=================================
从台州到金华的汽车。
意图: QUERY
槽位: [('Src', '台州', 1, 2), ('Dest', '金华', 4, 5)]
=================================
=================================
从西安到石嘴山的汽车票。
意图: QUERY
槽位: [('Src', '西安', 1, 2), ('Dest', '石嘴山', 4, 6)]
=================================
Owner
西西嘛呦
西西嘛呦
Implementation EfficientDet: Scalable and Efficient Object Detection in PyTorch

Implementation EfficientDet: Scalable and Efficient Object Detection in PyTorch

tonne 1.4k Dec 29, 2022
The CLRS Algorithmic Reasoning Benchmark

Learning representations of algorithms is an emerging area of machine learning, seeking to bridge concepts from neural networks with classical algorithms.

DeepMind 251 Jan 05, 2023
A Human-in-the-Loop workflow for creating HD images from text

A Human-in-the-Loop? workflow for creating HD images from text DALL·E Flow is an interactive workflow for generating high-definition images from text

Jina AI 2.5k Jan 02, 2023
Transfer style api - An API to use with Tranfer Style App, where you can use two image and transfer the style

Transfer Style API It's an API to use with Tranfer Style App, where you can use

Brian Alejandro 1 Feb 13, 2022
git《Commonsense Knowledge Base Completion with Structural and Semantic Context》(AAAI 2020) GitHub: [fig1]

Commonsense Knowledge Base Completion with Structural and Semantic Context Code for the paper Commonsense Knowledge Base Completion with Structural an

AI2 96 Nov 05, 2022
[IEEE TPAMI21] MobileSal: Extremely Efficient RGB-D Salient Object Detection [PyTorch & Jittor]

MobileSal IEEE TPAMI 2021: MobileSal: Extremely Efficient RGB-D Salient Object Detection This repository contains full training & testing code, and pr

Yu-Huan Wu 52 Jan 06, 2023
PyTorch implementation for our AAAI 2022 Paper "Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning"

deepGCFX PyTorch implementation for our AAAI 2022 Paper "Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning" Pr

Thilini Cooray 4 Aug 11, 2022
YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset

YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset, and represents Ultralytics open-source research int

阿才 73 Dec 16, 2022
"Inductive Entity Representations from Text via Link Prediction" @ The Web Conference 2021

Inductive entity representations from text via link prediction This repository contains the code used for the experiments in the paper "Inductive enti

Daniel Daza 45 Jan 09, 2023
A simple tutoral for error correction task, based on Pytorch

gramcorrector A simple tutoral for error correction task, based on Pytorch Grammatical Error Detection (sentence-level) a binary sequence-based classi

peiyuan_gong 8 Dec 03, 2022
Copy Paste positive polyp using poisson image blending for medical image segmentation

Copy Paste positive polyp using poisson image blending for medical image segmentation According poisson image blending I've completely used it for bio

Phạm Vũ Hùng 2 Oct 19, 2021
An Ensemble of CNN (Python 3.5.1 Tensorflow 1.3 numpy 1.13)

An Ensemble of CNN (Python 3.5.1 Tensorflow 1.3 numpy 1.13)

0 May 06, 2022
The code release of paper 'Domain Generalization for Medical Imaging Classification with Linear-Dependency Regularization' NIPS 2020.

Domain Generalization for Medical Imaging Classification with Linear Dependency Regularization The code release of paper 'Domain Generalization for Me

Yufei Wang 56 Dec 28, 2022
FairMOT - A simple baseline for one-shot multi-object tracking

FairMOT - A simple baseline for one-shot multi-object tracking

Yifu Zhang 3.6k Jan 08, 2023
UnpNet - Rethinking 3-D LiDAR Point Cloud Segmentation(IEEE TNNLS)

UnpNet Citation Please cite the following paper if you use this repository in your reseach. @article {PMID:34914599, Title = {Rethinking 3-D LiDAR Po

Shijie Li 4 Jul 15, 2022
MetaShift: A Dataset of Datasets for Evaluating Contextual Distribution Shifts and Training Conflicts (ICLR 2022)

MetaShift: A Dataset of Datasets for Evaluating Distribution Shifts and Training Conflicts This repo provides the PyTorch source code of our paper: Me

88 Jan 04, 2023
Local-Global Stratified Transformer for Efficient Video Recognition

DualFormer This repo is the implementation of our manuscript entitled "Local-Global Stratified Transformer for Efficient Video Recognition". Our model

Sea AI Lab 19 Dec 07, 2022
Unsupervised CNN for Single View Depth Estimation: Geometry to the Rescue

Realtime Unsupervised Depth Estimation from an Image This is the caffe implementation of our paper "Unsupervised CNN for single view depth estimation:

Ravi Garg 227 Nov 28, 2022
Massively parallel Monte Carlo diffusion MR simulator written in Python.

Disimpy Disimpy is a Python package for generating simulated diffusion-weighted MR signals that can be useful in the development and validation of dat

Leevi 16 Nov 11, 2022
Implementation for Curriculum DeepSDF

Curriculum-DeepSDF This repository is an implementation for Curriculum DeepSDF. Full paper is available here. Preparation Please follow original setti

Haidong Zhu 69 Dec 29, 2022