An interpreter for RASP as described in the ICML 2021 paper "Thinking Like Transformers"

Related tags

Deep LearningRASP
Overview

RASP

Setup

Mac or Linux

Run ./setup.sh . It will create a python3 virtual environment and install the dependencies for RASP. It will also try to install graphviz (the non-python part) and rlwrap on your machine. If these fail, you will still be able to use RASP, however: the interface will not be as nice without rlwrap, and drawing s-op computation flows will not be possible without graphviz. After having set up, you can run ./rasp.sh to start the RASP read-evaluate-print-loop.

Windows

Follow the instructions given in windows instructions.txt

The REPL

After having set up, if you are in mac/linux, you can run ./rasp.sh to start the RASP REPL. Otherwise, run python3 RASP_support/REPL.py Use Ctrl+C to quit a partially entered command, and Ctrl+D to exit the REPL.

Initial Environment

RASP starts with the base s-ops: tokens, indices, and length. It also has the base functions select, aggregate, and selector_width as described in the paper, a selector full_s created through select(1,1,==) that creates a "full" attention pattern, and several other library functions (check out RASP_support/rasplib.rasp to see them).

Additionally, the REPL begins with a base example, "hello", on which it shows the output for each created s-op or selector. This example can be changed, and toggled on and off, through commands to the REPL.

All RASP commands end with a semicolon. Commands to the REPL -- such as changing the base example -- do not.

Start by following along with the examples -- they are kept at the bottom of this readme.

Note on input types:

RASP expects inputs in four forms: strings, integers, floats, or booleans, handled respectively by tokens_str, tokens_int, tokens_float, and tokens_bool. Initially, RASP loads with tokens set to tokens_str, this can be changed by assignment, e.g.: tokens=tokens_int;. When changing the input type, you will also want to change the base example, e.g.: set example [0,1,2].

Note that assignments do not retroactively change the computation trees of existing s-ops!

Writing and Loading RASP files

To keep and load RASP code from files, save them with .rasp as the extension, and use the 'load' command without the extension. For example, you can load the examples file paper_examples.rasp in this repository to the REPL as follows:

>> load "paper_examples";

This will make (almost) all values in the file available in the loading environment (whether the REPL, or a different .rasp file): values whose names begin with an underscore remain private to the file they are written in. Loading files in the REPL will also print a list of all loaded values.

Syntax Highlighting

For the Sublime Text editor, you can get syntax highlighting for .rasp files as follows:

  1. Install package control for sublime (you might already have it: look in the menu [Sublime Text]->[Preferences] and see if it's there. If not, follow the instructions at https://packagecontrol.io/installation).
  2. Install the 'packagedev' package through package control ([Sublime Text]->[Preferences]->[Package Control], then type [install package], then [packagedev])
  3. After installing PackageDev, create a new syntax definition file through [Tools]->[Packages]->[Package Development]->[New Syntax Definition].
  4. Copy the contents of RASP_support/RASP.sublime-syntax into the new syntax definition file, and save it as RASP.sublime-syntax.

[Above is basically following the instructions in http://ilkinulas.github.io/programming/2016/02/05/sublime-text-syntax-highlighting.html , and then copying in the contents of the provided RASP.sublime-syntax file]

Examples

Play around in the REPL!

Try simple elementwise manipulations of s-ops:

>>  threexindices =3 * indices;
     s-op: threexindices
 	 Example: threexindices("hello") = [0, 3, 6, 9, 12] (ints)
>> indices+indices;
     s-op: out
 	 Example: out("hello") = [0, 2, 4, 6, 8] (ints)

Change the base example, and create a selector that focuses each position on all positions before it:

>> set example "hey"
>> prevs=select(indices,indices,<);
     selector: prevs
 	 Example:
 			     h e y
 			 h |      
 			 e | 1    
 			 y | 1 1  

Check the output of an s-op on your new base example:

>> threexindices;
     s-op: threexindices
 	 Example: threexindices("hey") = [0, 3, 6] (ints)

Or on specific inputs:

>> threexindices(["hi","there"]);
	 =  [0, 3] (ints)
>> threexindices("hiya");
	 =  [0, 3, 6, 9] (ints)

Aggregate with the full selection pattern (loaded automatically with the REPL) to compute the proportion of a letter in your input:

>> full_s;
     selector: full_s
 	 Example:
 			     h e y
 			 h | 1 1 1
 			 e | 1 1 1
 			 y | 1 1 1
>> my_frac=aggregate(full_s,indicator(tokens=="e"));
     s-op: my_frac
 	 Example: my_frac("hey") = [0.333]*3 (floats)

Note: when an s-op's output is identical in all positions, RASP simply prints the output of one position, followed by " * X" (where X is the sequence length) to mark the repetition.

Check if a letter is in your input at all:

>> "e" in tokens;
     s-op: out
 	 Example: out("hey") = [T]*3 (bools)

Alternately, in an elementwise fashion, check if each of your input tokens belongs to some group:

>> vowels = ["a","e","i","o","u"];
     list: vowels = ['a', 'e', 'i', 'o', 'u']
>> tokens in vowels;
     s-op: out
 	 Example: out("hey") = [F, T, F] (bools)

Draw the computation flow for an s-op you have created, on an input of your choice: (this will create a pdf in a subfolder comp_flows of the current directory)

>> draw(my_frac,"abcdeeee");
	 =  [0.5]*8 (floats)

Or simply on the base example:

>> draw(my_frac);
	 =  [0.333]*3 (floats)

If they bother you, turn the examples off, and bring them back when you need them:

>> examples off
>> indices;
     s-op: indices
>> full_s;
     selector: full_s
>> examples on
>> indices;
     s-op: indices
 	 Example: indices("hey") = [0, 1, 2] (ints)

You can also do this selectively, turning only selector or s-op examples on and off, e.g.: selector examples off.

Create a selector that focuses each position on all other positions containing the same token. But first, set the base example to "hello" for a better idea of what's happening:

>> set example "hello"
>> same_token=select(tokens,tokens,==);
     selector: same_token
 	 Example:
 			     h e l l o
 			 h | 1        
 			 e |   1      
 			 l |     1 1  
 			 l |     1 1  
 			 o |         1

Then, use selector_width to compute, for each position, how many other positions the selector same_token focuses it on. This effectively computes an in-place histogram over the input:

>> histogram=selector_width(same_token);
     s-op: histogram
 	 Example: histogram("hello") = [1, 1, 2, 2, 1] (ints)

For more complicated examples, check out paper_examples.rasp!

Experiments on Transformers

The transformers in the paper were trained, and their attention heatmaps visualised, using the code in this repository: https://github.com/tech-srl/RASP-exps

Official implementation of "Intrinsic Dimension, Persistent Homology and Generalization in Neural Networks", NeurIPS 2021.

PHDimGeneralization Official implementation of "Intrinsic Dimension, Persistent Homology and Generalization in Neural Networks", NeurIPS 2021. Overvie

Tolga Birdal 13 Nov 08, 2022
Understanding Convolution for Semantic Segmentation

TuSimple-DUC by Panqu Wang, Pengfei Chen, Ye Yuan, Ding Liu, Zehua Huang, Xiaodi Hou, and Garrison Cottrell. Introduction This repository is for Under

TuSimple 585 Dec 31, 2022
A generalist algorithm for cell and nucleus segmentation.

Cellpose | A generalist algorithm for cell and nucleus segmentation. Cellpose was written by Carsen Stringer and Marius Pachitariu. To learn about Cel

MouseLand 733 Dec 29, 2022
Code for "Primitive Representation Learning for Scene Text Recognition" (CVPR 2021)

Primitive Representation Learning Network (PREN) This repository contains the code for our paper accepted by CVPR 2021 Primitive Representation Learni

Ruijie Yan 76 Jan 02, 2023
Pytorch implementation of MaskFlownet

MaskFlownet-Pytorch Unofficial PyTorch implementation of MaskFlownet (https://github.com/microsoft/MaskFlownet). Tested with: PyTorch 1.5.0 CUDA 10.1

Daniele Cattaneo 84 Nov 02, 2022
An implementation of the Contrast Predictive Coding (CPC) method to train audio features in an unsupervised fashion.

CPC_audio This code implements the Contrast Predictive Coding algorithm on audio data, as described in the paper Unsupervised Pretraining Transfers we

Meta Research 283 Dec 30, 2022
A-ESRGAN aims to provide better super-resolution images by using multi-scale attention U-net discriminators.

A-ESRGAN: Training Real-World Blind Super-Resolution with Attention-based U-net Discriminators The authors are hidden for the purpose of double blind

77 Dec 16, 2022
Fast, flexible and easy to use probabilistic modelling in Python.

Please consider citing the JMLR-MLOSS Manuscript if you've used pomegranate in your academic work! pomegranate is a package for building probabilistic

Jacob Schreiber 3k Dec 29, 2022
Using CNN to mimic the driver based on training data from Torcs

Behavioural-Cloning-in-autonomous-driving Using CNN to mimic the driver based on training data from Torcs. Approach First, the data was collected from

Sudharshan 2 Jan 05, 2022
Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow

Mask R-CNN for Object Detection and Segmentation This is an implementation of Mask R-CNN on Python 3, Keras, and TensorFlow. The model generates bound

Matterport, Inc 22.5k Jan 04, 2023
Official DGL implementation of "Rethinking High-order Graph Convolutional Networks"

SE Aggregation This is the implementation for Rethinking High-order Graph Convolutional Networks. Here we show the codes for citation networks as an e

Tianqi Zhang (张天启) 32 Jul 19, 2022
ADSPM: Attribute-Driven Spontaneous Motion in Unpaired Image Translation

ADSPM: Attribute-Driven Spontaneous Motion in Unpaired Image Translation This repository provides a PyTorch implementation of ADSPM. Requirements Pyth

24 Jul 24, 2022
CCP dataset from Clothing Co-Parsing by Joint Image Segmentation and Labeling

Clothing Co-Parsing (CCP) Dataset Clothing Co-Parsing (CCP) dataset is a new clothing database including elaborately annotated clothing items. 2, 098

Wei Yang 434 Dec 24, 2022
Honours project, on creating a depth estimation map from two stereo images of featureless regions

image-processing This module generates depth maps for shape-blocked-out images Install If working with anaconda, then from the root directory: conda e

2 Oct 17, 2022
GLaRA: Graph-based Labeling Rule Augmentation for Weakly Supervised Named Entity Recognition

GLaRA: Graph-based Labeling Rule Augmentation for Weakly Supervised Named Entity Recognition

Xinyan Zhao 29 Dec 26, 2022
Hyperbolic Procrustes Analysis Using Riemannian Geometry

Hyperbolic Procrustes Analysis Using Riemannian Geometry The code in this repository creates the figures presented in this article: Please notice that

Ronen Talmon's Lab 2 Jan 08, 2023
An open source AutoML toolkit for automate machine learning lifecycle, including feature engineering, neural architecture search, model compression and hyper-parameter tuning.

NNI Doc | 简体中文 NNI (Neural Network Intelligence) is a lightweight but powerful toolkit to help users automate Feature Engineering, Neural Architecture

Microsoft 12.4k Dec 31, 2022
Escaping the Gradient Vanishing: Periodic Alternatives of Softmax in Attention Mechanism

Period-alternatives-of-Softmax Experimental Demo for our paper 'Escaping the Gradient Vanishing: Periodic Alternatives of Softmax in Attention Mechani

slwang9353 0 Sep 06, 2021
Bridging Vision and Language Model

BriVL BriVL (Bridging Vision and Language Model) 是首个中文通用图文多模态大规模预训练模型。BriVL模型在图文检索任务上有着优异的效果,超过了同期其他常见的多模态预训练模型(例如UNITER、CLIP)。 BriVL论文:WenLan: Bridgi

235 Dec 27, 2022