Chatbot in 200 lines of code using TensorLayer

Overview

Seq2Seq Chatbot

This is a 200 lines implementation of Twitter/Cornell-Movie Chatbot, please read the following references before you read the code:

Prerequisites

Model


Training

python3 main.py

Results

Query > happy birthday have a nice day
 > thank you so much
 > thank babe
 > thank bro
 > thanks so much
 > thank babe i appreciate it
Query > donald trump won last nights presidential debate according to snap online polls
 > i dont know what the fuck is that
 > i think he was a racist
 > he is not a racist
 > he is a liar
 > trump needs to be president
Comments
  • [WIP] Fix error in PR #16 Inference mode and TF compatibility

    [WIP] Fix error in PR #16 Inference mode and TF compatibility

    Hey @pskrunner14

    Thanks for the great PR! We have rolled back the PR you recently submitted as the PR contains the error. Could you please have a look on it and we can merge it again? You can create a PR from your fork again or directly modify from here.

    Cheers, Luo

    opened by luomai 6
  • No module named 'tensorlayer.models.seq2seq'

    No module named 'tensorlayer.models.seq2seq'

    Can someone share with me how to resolve this error? Thanks.

    Traceback (most recent call last): File "D:\ChatBot\seq2seq-chatbot-master\main.py", line 11, in from tensorlayer.models.seq2seq import Seq2seq ModuleNotFoundError: No module named 'tensorlayer.models.seq2seq'

    opened by geongm 5
  • Change seq2seq import names

    Change seq2seq import names

    Had the #37 problem. It looks like on in current version of tensorlayer import names changed.

    These imports work with tensorflow 2.0.0-beta1 tensorlayer 2.1.0

    opened by egens 4
  • TL2.0

    TL2.0

    Update model compatible with TensorLayer2.0. Rewrite the loss. cross_entropy_seq_with_mask and cross_entropy_seq. Need to run to see if it converges and produce desirable results

    opened by ArnoldLIULJ 3
  • Inference mode and TF compatibility

    Inference mode and TF compatibility

    • Moved Inference code to a function.
    • Added optional arguments including running script in inference mode [usage python main.py --help].
    • Added tqdm progress bar for info while training.
    • Made the code compatible with TF v1.10.0 and TL v1.10.1.
    • Changed tf.contrib.rnn.BasicLSTMCell to tf.nn.rnn_cell.LSTMCell since the former is deprecated.
    • Moved session config to global scope.
    • Refactored code into relevant functions and reordered them so that the higher-level ones appear earlier in the code.
    • Renamed script to main.py for ease of use.
    • Updated README to add training and inference usage commands.
    • Added requirements.txt file.
    • Changed n.npz to model.npz since it is more standard.

    Note: Fixes #12 and #15

    opened by pskrunner14 3
  • Using the Chatbot

    Using the Chatbot

    Hi there,

    I trained the data for a few days and now the samples are returning good results to the predefined "Happy Birthday" and "Trump" requests.

    Great job by you. Thanks so far.

    Do you already have a small python program for using the chatbot? If I write a message, the chatbot should return a single answer.

    Thanks Chris

    opened by cpro90 3
  • Training is taking too much time

    Training is taking too much time

    Training on CPU is taking too much time, so do you have any estimate how much time it will take? I have executed this 12 hours ago and now i am on just "Epoch[2/50] step:[600/2852] loss:5.684645 took:9.62770s". Can you please help me to boost this training.

    opened by aqeellegalinc 3
  • Inference mode and TF compatibility (#16)

    Inference mode and TF compatibility (#16)

    @pskrunner14

    We have rolled back the PR you recently submitted as the PR contains the error. Could you please have a look on it and we can merge it again?

    opened by luomai 2
  • Fixes TL global variables initializer deprecated issue and Code readability

    Fixes TL global variables initializer deprecated issue and Code readability

    Fixed TensorLayer initialize global vars deprecated issue #13, changed learning rate to 0.001 for faster convergence, improved code readability and removed redundant comments and code

    opened by pskrunner14 2
  • Can't import data

    Can't import data

    ModuleNotFoundError Traceback (most recent call last) in () 8 9 ###============= prepare data ---> 10 from data.twitter import data 11 metadata, idx_q, idx_a = data.load_data(PATH='data/twitter/') # Twitter 12 # from data.cornell_corpus import data

    ModuleNotFoundError: No module named 'data.twitter'

    opened by georgexli 2
  • No module named twitter

    No module named twitter

    File "main_simple_seq2seq.py", line 18, in from data.twitter import data ImportError: No module named twitter

    Did I miss some files? Can you please help me?Many thanks^ o^

    opened by MProtoss 1
  • ModuleNotFoundError: No module named 'data.twitter'; 'data' is not a package

    ModuleNotFoundError: No module named 'data.twitter'; 'data' is not a package

    I am trying to write code for Chat Box, but encountering the error "ModuleNotFoundError: No module named 'data.twitter'; 'data' is not a package" when trying to execute "from data.twitter import data".

    Please suggest , how to resolve the issue?

    note: I am working on following environment: Python is 3.6 V Tensorflow : 2.0 Tensorlayer: 2.2 python-twitter

    opened by mhmitalihalder 0
  • How could I get the

    How could I get the "thought vector" using TensorLayer?

    I am using the seq2seq model as an autoencoder. Given a test paragraph, I'd like to get the thought vector (using the terminology in the figure of README.md).

    opened by munichong 0
Releases(0.1)
Owner
TensorLayer Community
A neutral open community to promote AI technology.
TensorLayer Community
《Single Image Reflection Removal Beyond Linearity》(CVPR 2019)

Single-Image-Reflection-Removal-Beyond-Linearity Paper Single Image Reflection Removal Beyond Linearity. Qiang Wen, Yinjie Tan, Jing Qin, Wenxi Liu, G

Qiang Wen 51 Jun 24, 2022
Codes for paper "KNAS: Green Neural Architecture Search"

KNAS Codes for paper "KNAS: Green Neural Architecture Search" KNAS is a green (energy-efficient) Neural Architecture Search (NAS) approach. It contain

90 Dec 22, 2022
Using pretrained language models for biomedical knowledge graph completion.

LMs for biomedical KG completion This repository contains code to run the experiments described in: Scientific Language Models for Biomedical Knowledg

Rahul Nadkarni 41 Nov 30, 2022
Code for SyncTwin: Treatment Effect Estimation with Longitudinal Outcomes (NeurIPS 2021)

SyncTwin: Treatment Effect Estimation with Longitudinal Outcomes (NeurIPS 2021) SyncTwin is a treatment effect estimation method tailored for observat

Zhaozhi Qian 3 Nov 03, 2022
Self-Supervised Learning with Kernel Dependence Maximization

Self-Supervised Learning with Kernel Dependence Maximization This is the code for SSL-HSIC, a self-supervised learning loss proposed in the paper Self

DeepMind 29 Dec 29, 2022
Improving Contrastive Learning by Visualizing Feature Transformation, ICCV 2021 Oral

Improving Contrastive Learning by Visualizing Feature Transformation This project hosts the codes, models and visualization tools for the paper: Impro

Bingchen Zhao 83 Dec 15, 2022
A New Approach to Overgenerating and Scoring Abstractive Summaries

We provide the source code for the paper "A New Approach to Overgenerating and Scoring Abstractive Summaries" accepted at NAACL'21. If you find the code useful, please cite the following paper.

Kaiqiang Song 4 Apr 03, 2022
LQM - Improving Object Detection by Estimating Bounding Box Quality Accurately

Improving Object Detection by Estimating Bounding Box Quality Accurately Abstract Object detection aims to locate and classify object instances in ima

IM Lab., POSTECH 0 Sep 28, 2022
Load What You Need: Smaller Multilingual Transformers for Pytorch and TensorFlow 2.0.

Smaller Multilingual Transformers This repository shares smaller versions of multilingual transformers that keep the same representations offered by t

Geotrend 79 Dec 28, 2022
Readings for "A Unified View of Relational Deep Learning for Polypharmacy Side Effect, Combination Therapy, and Drug-Drug Interaction Prediction."

Polypharmacy - DDI - Synergy Survey The Survey Paper This repository accompanies our survey paper A Unified View of Relational Deep Learning for Polyp

AstraZeneca 79 Jan 05, 2023
A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains (IJCV submission)

wsss-analysis The code of: A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains, arXiv pre-print 2019 paper.

Lyndon Chan 48 Dec 18, 2022
Code for our SIGCOMM'21 paper "Network Planning with Deep Reinforcement Learning".

0. Introduction This repository contains the source code for our SIGCOMM'21 paper "Network Planning with Deep Reinforcement Learning". Notes The netwo

NetX Group 68 Nov 24, 2022
PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning

PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning Warning: This is a rapidly evolving research prototype.

MIT Probabilistic Computing Project 190 Dec 27, 2022
Learning hierarchical attention for weakly-supervised chest X-ray abnormality localization and diagnosis

Hierarchical Attention Mining (HAM) for weakly-supervised abnormality localization This is the official PyTorch implementation for the HAM method. Pap

Xi Ouyang 22 Jan 02, 2023
code for Multi-scale Matching Networks for Semantic Correspondence, ICCV

MMNet This repo is the official implementation of ICCV 2021 paper "Multi-scale Matching Networks for Semantic Correspondence.". Pre-requisite conda cr

joey zhao 25 Dec 12, 2022
Natural Intelligence is still a pretty good idea.

Human Learn Machine Learning models should play by the rules, literally. Project Goal Back in the old days, it was common to write rule-based systems.

vincent d warmerdam 641 Dec 26, 2022
Official Code Release for Container : Context Aggregation Network

Container: Context Aggregation Network Official Code Release for Container : Context Aggregation Network Comparion between CNN, MLP-Mixer and Transfor

peng gao 42 Nov 17, 2021
PyTorch implementation of TSception V2 using DEAP dataset

TSception This is the PyTorch implementation of TSception V2 using DEAP dataset in our paper: Yi Ding, Neethu Robinson, Su Zhang, Qiuhao Zeng, Cuntai

Yi Ding 27 Dec 15, 2022
Pytorch implementation of the unsupervised object discovery method LOST.

LOST Pytorch implementation of the unsupervised object discovery method LOST. More details can be found in the paper: Localizing Objects with Self-Sup

Valeo.ai 189 Dec 25, 2022
Deep Inside Convolutional Networks - This is a caffe implementation to visualize the learnt model

Deep Inside Convolutional Networks This is a caffe implementation to visualize the learnt model. Part of a class project at Georgia Tech Problem State

Jigar 61 Apr 15, 2022