Tevatron is a simple and efficient toolkit for training and running dense retrievers with deep language models.

Overview

Tevatron

Tevatron is a simple and efficient toolkit for training and running dense retrievers with deep language models. The toolkit has a modularized design for easy research; a set of command line tools are also provided for fast development and testing. A set of easy-to-use interfaces to Huggingfac's state-of-the-art pre-trained transformers ensures Tevatron's superior performance.

Tevatron is currently under initial development stage. We will be actively adding new features and API changes may happen. Suggestions, feature requests and PRs are welcomed.

Features

  • Command line interface for dense retriever training/encoding and dense index search.
  • Flexible and extendable Pytorch retriever models.
  • Highly efficient Trainer, a subclass of Huggingface Trainer, that naively support training performance features like mixed precision and distributed data parallel.
  • Fast and memory-efficient train/inference data access based on memory mapping with Apache Arrow through Huggingface datasets.

Installation

First install neural network and similarity search backends, namely Pytorch and FAISS. Check out the official installation guides for Pytorch and for FAISS.

Then install Tevatron with pip,

pip install tevatron

Or typically for develoment/research, clone this repo and install as editable,

git https://github.com/texttron/tevatron
cd tevatron
pip install --editable .

Note: The current code base has been tested with, torch==1.8.2, faiss-cpu==1.7.1, transformers==4.9.2, datasets==1.11.0

Data Format

Training: Each line of the the Train file is a training instance,

{'query': TEXT_TYPE, 'positives': List[TEXT_TYPE], 'negatives': List[TEXT_TYPE]}
...

Inference/Encoding: Each line of the the encoding file is a piece of text to be encoded,

{text_id: "xxx", 'text': TEXT_TYPE}
...

Here TEXT_TYPE can be either raw string or pre-tokenized ids, i.e. List[int]. Using the latter can help lower data processing latency during training to reduce/eliminate GPU wait. Note: the current code requires text_id of passages/contexts to be convertible to integer, e.g. integers or string of integers.

Training (Simple)

To train a simple dense retriever, call the tevatron.driver.train module,

python -m tevatron.driver.train \  
  --output_dir $OUTDIR \  
  --model_name_or_path bert-base-uncased \  
  --do_train \  
  --save_steps 20000 \  
  --train_dir $TRAIN_DIR \
  --fp16 \  
  --per_device_train_batch_size 8 \  
  --learning_rate 5e-6 \  
  --num_train_epochs 2 \  
  --dataloader_num_workers 2

Here we picked bert-base-uncased BERT weight from Huggingface Hub and turned on AMP with --fp16 to speed up training. Several command flags are provided in addition to configure the learned model, e.g. --add_pooler which adds an linear projection. A full list command line arguments can be found in tevatron.arguments.

Training (Research)

Check out the run.py in examples directory for a fully configurable train/test loop. Typically you will do,

from tevatron.modeling import DenseModel
from tevatron.trainer import DenseTrainer as Trainer

...
model = DenseModel.build(
        model_args,
        data_args,
        training_args,
        config=config,
        cache_dir=model_args.cache_dir,
    )
trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset,
        data_collator=collator,
    )
...
trainer.train()

Encoding

To encode, call the tevatron.driver.encode module. For large corpus, split the corpus into shards to parallelize.

for s in shard1 shar2 shard3
do
python -m tevatron.driver.encode \  
  --output_dir=$OUTDIR \  
  --tokenizer_name $TOK \  
  --config_name $CONFIG \  
  --model_name_or_path $MODEL_DIR \  
  --fp16 \  
  --per_device_eval_batch_size 128 \  
  --encode_in_path $CORPUS_DIR/$s.json \  
  --encoded_save_path $ENCODE_DIR/$s.pt
done

Index Search

Call the tevatron.faiss_retriever module,

python -m tevatron.faiss_retriever \  
--query_reps $ENCODE_QRY_DIR/qry.pt \  
--passage_reps $ENCODE_DIR/'*.pt' \  
--depth $DEPTH \
--batch_size -1 \
--save_text \
--save_ranking_to rank.tsv

Encoded corpus or corpus shards are loaded based on glob pattern matching of argument --passage_reps. Argument --batch_size controls number of queries passed to the FAISS index each search call and -1 will pass all queries in one call. Larger batches typically run faster (due to better memory access patterns and hardware utilization.) Setting flag --save_text will save the ranking to a tsv file with each line being qid pid score.

Alternatively paralleize search over the shards,

for s in shard1 shar2 shard3
do
python -m tevatron.faiss_retriever \  
--query_reps $ENCODE_QRY_DIR/qry.pt \  
--passage_reps $ENCODE_DIR/$s.pt \  
--depth $DEPTH \  
--save_ranking_to $INTERMEDIATE_DIR/$s
done

Then combine the results using the reducer module,

python -m tevatron.faiss_retriever.reducer \  
--score_dir $INTERMEDIATE_DIR \  
--query $ENCODE_QRY_DIR/qry.pt \  
--save_ranking_to rank.txt  

Contacts

If you have a toolkit specific question, feel free to open an issue.

You can also reach out to us for general comments/suggestions/questions through email.

Owner
texttron
texttron
Simple text to phones converter for multiple languages

Phonemizer -- foʊnmaɪzɚ The phonemizer allows simple phonemization of words and texts in many languages. Provides both the phonemize command-line tool

CoML 762 Dec 29, 2022
Official source for spanish Language Models and resources made @ BSC-TEMU within the "Plan de las Tecnologías del Lenguaje" (Plan-TL).

Spanish Language Models 💃🏻 A repository part of the MarIA project. Corpora 📃 Corpora Number of documents Number of tokens Size (GB) BNE 201,080,084

Plan de Tecnologías del Lenguaje - Gobierno de España 203 Dec 20, 2022
Unsupervised intent recognition

INTENT author: steeve LAQUITAINE description: deployment pattern: currently batch only Setup & run git clone https://github.com/slq0/intent.git bash

sl 1 Apr 08, 2022
Implementing SimCSE(paper, official repository) using TensorFlow 2 and KR-BERT.

KR-BERT-SimCSE Implementing SimCSE(paper, official repository) using TensorFlow 2 and KR-BERT. Training Unsupervised python train_unsupervised.py --mi

Jeong Ukjae 27 Dec 12, 2022
Silero Models: pre-trained speech-to-text, text-to-speech models and benchmarks made embarrassingly simple

Silero Models: pre-trained speech-to-text, text-to-speech models and benchmarks made embarrassingly simple

Alexander Veysov 3.2k Dec 31, 2022
CPC-big and k-means clustering for zero-resource speech processing

The CPC-big model and k-means checkpoints used in Analyzing Speaker Information in Self-Supervised Models to Improve Zero-Resource Speech Processing.

Benjamin van Niekerk 5 Nov 23, 2022
File-based TF-IDF: Calculates keywords in a document, using a word corpus.

File-based TF-IDF Calculates keywords in a document, using a word corpus. Why? Because I found myself with hundreds of plain text files, with no way t

Jakob Lindskog 1 Feb 11, 2022
Statistics and Mathematics for Machine Learning, Deep Learning , Deep NLP

Stat4ML Statistics and Mathematics for Machine Learning, Deep Learning , Deep NLP This is the first course from our trio courses: Statistics Foundatio

Omid Safarzadeh 83 Dec 29, 2022
Repository for the paper: VoiceMe: Personalized voice generation in TTS

🗣 VoiceMe: Personalized voice generation in TTS Abstract Novel text-to-speech systems can generate entirely new voices that were not seen during trai

Pol van Rijn 80 Dec 29, 2022
novel deep learning research works with PaddlePaddle

Research 发布基于飞桨的前沿研究工作,包括CV、NLP、KG、STDM等领域的顶会论文和比赛冠军模型。 目录 计算机视觉(Computer Vision) 自然语言处理(Natrual Language Processing) 知识图谱(Knowledge Graph) 时空数据挖掘(Spa

1.5k Jan 03, 2023
🌐 Translation microservice powered by AI

Dot Translate 🌐 A microservice for quick and local translation using A.I. This service starts a local webserver used for neural machine translation.

Dot HQ 48 Nov 22, 2022
AudioCLIP Extending CLIP to Image, Text and Audio

AudioCLIP Extending CLIP to Image, Text and Audio This repository contains implementation of the models described in the paper arXiv:2106.13043. This

458 Jan 02, 2023
Host your own GPT-3 Discord bot

GPT3 Discord Bot Host your own GPT-3 Discord bot i'd host and make the bot invitable myself, however GPT3 terms of service prohibit public use of GPT3

[something hillarious here] 8 Jan 07, 2023
Nested Named Entity Recognition

Nested Named Entity Recognition Training Dataset: CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark url: https://tianchi.aliyun.

8 Dec 25, 2022
[Preprint] Escaping the Big Data Paradigm with Compact Transformers, 2021

Compact Transformers Preprint Link: Escaping the Big Data Paradigm with Compact Transformers By Ali Hassani[1]*, Steven Walton[1]*, Nikhil Shah[1], Ab

SHI Lab 367 Dec 31, 2022
Graph Coloring - Weighted Vertex Coloring Problem

Graph Coloring - Weighted Vertex Coloring Problem This project proposes several local searches and an MCTS algorithm for the weighted vertex coloring

Cyril 1 Jul 08, 2022
Transformation spoken text to written text

Transformation spoken text to written text This model is used for formatting raw asr text output from spoken text to written text (Eg. date, number, i

Nguyen Binh 16 Dec 28, 2022
Optimal Transport Tools (OTT), A toolbox for all things Wasserstein.

Optimal Transport Tools (OTT), A toolbox for all things Wasserstein. See full documentation for detailed info on the toolbox. The goal of OTT is to pr

OTT-JAX 255 Dec 26, 2022
Code for the ACL 2021 paper "Structural Guidance for Transformer Language Models"

Structural Guidance for Transformer Language Models This repository accompanies the paper, Structural Guidance for Transformer Language Models, publis

International Business Machines 10 Dec 14, 2022
Snips Python library to extract meaning from text

Snips NLU Snips NLU (Natural Language Understanding) is a Python library that allows to extract structured information from sentences written in natur

Snips 3.7k Dec 30, 2022