The official implementation of the CVPR2021 paper: Decoupled Dynamic Filter Networks

Overview

Decoupled Dynamic Filter Networks

This repo is the official implementation of CVPR2021 paper: "Decoupled Dynamic Filter Networks".

Introduction

DDF is an alternative of convolution which decouples dynamic filters into spatial and channel filters.

DDF operation

We illustrate the DDF operation and the DDF module. The orange color denotes spatial dynamic filters / branch, and the green color denotes channel dynamic filters / branch. The filter application means applying the convolution operation at a single position. ‘GAP’ means the global average pooling and ‘FC’ denotes the fully connected layer.

Please refer to our project page and paper for more details.

Model zoo

Will be avaliable soon.

Usage

Install

  • Clone this repo:
git clone https://github.com/theFoxofSky/ddfnet.git
cd ddfnet
  • Create a conda virtual environment and activate it:
conda create -n ddfnet python=3.7 -y
conda activate ddfnet
conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=10.1 -c pytorch
  • Install timm==0.4.5:
pip install timm==0.4.5
  • Install Apex:
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
  • Install other requirements:
pip install pyyaml ipdb
  • Build the ddf operation:
cd ddf
python setup.py install
mv build/lib*/* .
  • Verify the ddf operation:
cd <path_to_ddfnet>
python grad_check.py

Data preparation

We use standard ImageNet dataset, you can download it from http://image-net.org/. Please prepare it under the following file structure:

$ tree data
imagenet
├── train
│   ├── class1
│   │   ├── img1.jpeg
│   │   ├── img2.jpeg
│   │   └── ...
│   ├── class2
│   │   ├── img3.jpeg
│   │   └── ...
│   └── ...
└── val
    ├── class1
    │   ├── img4.jpeg
    │   ├── img5.jpeg
    │   └── ...
    ├── class2
    │   ├── img6.jpeg
    │   └── ...
    └── ...

Training from scratch

To train a model, for example ddf_mul_resnet50, on ImageNet from scratch with 8 RTX 2080Ti, run:

./distributed_train.sh 8 <path_to_imagenet> --model ddf_mul_resnet50 --lr 0.4 \
--warmup-epochs 5 --epochs 120 --sched cosine -b 128 -j 6 --amp --dist-bn reduce

Evaluation

To evaluate a pre-trained model, for example ddf_mul_resnet50, on ImageNet val, run:

python validate.py <path_to_imagenet> --model ddf_mul_resnet50 --checkpoint <path_to_checkpoint>

Inference time

To measure the inference time, run:

python test_time.py

Use ddf in other places as a basic building layer

Please directly copy the ddf folder to your repo and rebuild the ddf operation following the instructions above. Then, you can easily import the ddf operation, the DDFPack, and the DDFUpPack.

You can design your own module with the ddf operation.

For example, you can get a carafe/involution-like module by fixing all values in the channel filter to 1 for 'mul' combination or 0 for 'add' combination.

channel_filter = torch.ones(filter_size)
output = ddf(input, channel_filter, spatial_filter,
             kernel_size, dilation, stride, head, 'mul')

or

channel_filter = torch.zeros(filter_size)
output = ddf(input, channel_filter, spatial_filter,
             kernel_size, dilation, stride, head, 'add')

Similarly, you can get a WeightNet-like depthwise filter by fixing all values in the spatial filter to 1 for 'mul' combination or 0 for 'add' combination.

spatial_filter = torch.ones(filter_size)
output = ddf(input, channel_filter, spatial_filter,
             kernel_size, dilation, stride, head, 'mul')

or

spatial_filter = torch.zeros(filter_size)
output = ddf(input, channel_filter, spatial_filter,
             kernel_size, dilation, stride, head, 'add')

Almost all exisitng weight-dynamic depthwise operation (not grid-dynamic like deformable convolution) can be implemented with our ddf operation. Have fun exploring.

Acknowledgement

Codebase from pytorch-image-models.

Citation

If you find this code useful for your research, please cite our paper.

@inproceedings{zhou_ddf_cvpr_2021,
               title = {Decoupled Dynamic Filter Networks},
               author = {Zhou, Jingkai and Jampani, Varun and Pi, Zhixiong and Liu, Qiong and Yang, Ming-Hsuan},
               booktitle = {IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR)},
               month = jun,
               year = {2021}
               }
Owner
F.S.Fire
A CS student. Now I am working at Alibaba DAMO Academy.
F.S.Fire
Convert ONNX model graph to Keras model format.

Convert ONNX model graph to Keras model format.

Grigory Malivenko 175 Dec 28, 2022
Improving the robustness and performance of biomedical NLP models through adversarial training

RobustBioNLP Improving the robustness and performance of biomedical NLP models through adversarial training In this repository you can find suppliment

Milad Moradi 3 Sep 20, 2022
Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically.

Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically. The collected data will then be used to train a deep neural network that can

Martin Valchev 3 Apr 24, 2022
Stereo Radiance Fields (SRF): Learning View Synthesis for Sparse Views of Novel Scenes

Stereo Radiance Fields (SRF): Learning View Synthesis for Sparse Views of Novel Scenes

111 Dec 29, 2022
Implementation of Graph Convolutional Networks in TensorFlow

Graph Convolutional Networks This is a TensorFlow implementation of Graph Convolutional Networks for the task of (semi-supervised) classification of n

Thomas Kipf 6.6k Dec 30, 2022
Official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels".

WarPI The official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels". Run python main.py --corruption_type

Haoliang Sun 3 Sep 03, 2022
A Python script that creates subtitles of a given length from text paragraphs that can be easily imported into any Video Editing software such as FinalCut Pro for further adjustments.

Text to Subtitles - Python This python file creates subtitles of a given length from text paragraphs that can be easily imported into any Video Editin

Dmytro North 9 Dec 24, 2022
ICRA 2021 - Robust Place Recognition using an Imaging Lidar

Robust Place Recognition using an Imaging Lidar A place recognition package using high-resolution imaging lidar. For best performance, a lidar equippe

Tixiao Shan 293 Dec 27, 2022
A Python type explainer!

typesplainer A Python typehint explainer! Available as a cli, as a website, as a vscode extension, as a vim extension Usage First, install the package

Typesplainer 79 Dec 01, 2022
DL & CV-based indicator toolset for the vehicle drivers via live dash-cam footage.

Vehicle Indicator Toolset Deep Learning and Computer Vision based indicator toolset for vehicle drivers using live dash-cam footages. Tracking of vehi

Alex Xu 12 Dec 28, 2021
EZ graph is an easy to use AI solution that allows you to make and train your neural networks without a single line of code.

EZ-Graph EZ Graph is a GUI that allows users to make and train neural networks without writing a single line of code. Requirements python 3 pandas num

1 Jul 03, 2022
Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics

[AAAI2022] Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics Overall pipeline of OCN. Paper Link: [arXiv] [AAAI

13 Nov 21, 2022
Official code for 'Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urban Driving Scenes'

PEBAL This repo contains the Pytorch implementation of our paper: Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urba

Yu Tian 115 Dec 29, 2022
Pytorch implementation of Integrating Tree Path in Transformer for Code Representation

This is an official Pytorch implementation of the approaches proposed in: Han Peng, Ge Li, Wenhan Wang, Yunfei Zhao, Zhi Jin “Integrating Tree Path in

Han Peng 16 Dec 23, 2022
Source code for the paper: Variance-Aware Machine Translation Test Sets (NeurIPS 2021 Datasets and Benchmarks Track)

Variance-Aware-MT-Test-Sets Variance-Aware Machine Translation Test Sets License See LICENSE. We follow the data licensing plan as the same as the WMT

NLP2CT Lab, University of Macau 5 Dec 21, 2021
LVI-SAM: Tightly-coupled Lidar-Visual-Inertial Odometry via Smoothing and Mapping

LVI-SAM This repository contains code for a lidar-visual-inertial odometry and mapping system, which combines the advantages of LIO-SAM and Vins-Mono

Tixiao Shan 1.1k Dec 27, 2022
Official Repository for our ECCV2020 paper: Imbalanced Continual Learning with Partitioning Reservoir Sampling

Imbalanced Continual Learning with Partioning Reservoir Sampling This repository contains the official PyTorch implementation and the dataset for our

Chris Dongjoo Kim 40 Sep 18, 2022
Expand human face editing via Global Direction of StyleCLIP, especially to maintain similarity during editing.

Oh-My-Face This project is based on StyleCLIP, RIFE, and encoder4editing, which aims to expand human face editing via Global Direction of StyleCLIP, e

AiLin Huang 51 Nov 17, 2022
EMNLP 2021: Single-dataset Experts for Multi-dataset Question-Answering

MADE (Multi-Adapter Dataset Experts) This repository contains the implementation of MADE (Multi-adapter dataset experts), which is described in the pa

Princeton Natural Language Processing 68 Jul 18, 2022
Annotated, understandable, and visually interpretable PyTorch implementations of: VAE, BIRVAE, NSGAN, MMGAN, WGAN, WGANGP, LSGAN, DRAGAN, BEGAN, RaGAN, InfoGAN, fGAN, FisherGAN

Overview PyTorch 0.4.1 | Python 3.6.5 Annotated implementations with comparative introductions for minimax, non-saturating, wasserstein, wasserstein g

Shayne O'Brien 471 Dec 16, 2022