An application of high resolution GANs to dewarp images of perturbed documents

Overview

Docuwarp

Codacy Badge Python version

This project is focused on dewarping document images through the usage of pix2pixHD, a GAN that is useful for general image to image translation. The objective is to take images of documents that are warped, folded, crumpled, etc. and convert the image to a "dewarped" state by using pix2pixHD to train and perform inference. All of the model code is borrowed directly from the pix2pixHD official repository.

Some of the intuition behind doing this is inspired by these two papers:

  1. DocUNet: Document Image Unwarping via A Stacked U-Net (Ma et.al)
  2. Document Image Dewarping using Deep Learning (Ramanna et.al)

May 8, 2020 : Important Update

  • This project does not contain a pre-trained model. I currently do not have the resources to train a model on an open source dataset, nor do I have the bandwidth at the moment to do so. If anyone would like to contribute a pretrained model and share their model checkpoints, feel free to do so, I will likely accept any PR trying to do this. Thanks!

Prerequisites

This project requires Python and the following Python libraries installed:

Getting Started

Installation

pip install dominate
  • Clone this repo:
git clone https://github.com/thomasjhuang/deep-learning-for-document-dewarping
cd deep-learning-for-document-dewarping

Training

  • Train the kaggle model with 256x256 crops:
python train.py --name kaggle --label_nc 0 --no_instance --no_flip --netG local --ngf 32 --fineSize 256
  • To view training results, please checkout intermediate results in ./checkpoints/kaggle/web/index.html. If you have tensorflow installed, you can see tensorboard logs in ./checkpoints/kaggle/logs by adding --tf_log to the training scripts.

Training with your own dataset

  • If you want to train with your own dataset, please generate label maps which are one-channel whose pixel values correspond to the object labels (i.e. 0,1,...,N-1, where N is the number of labels). This is because we need to generate one-hot vectors from the label maps. Please also specity --label_nc N during both training and testing.
  • If your input is not a label map, please just specify --label_nc 0 which will directly use the RGB colors as input. The folders should then be named train_A, train_B instead of train_label, train_img, where the goal is to translate images from A to B.
  • If you don't have instance maps or don't want to use them, please specify --no_instance.
  • The default setting for preprocessing is scale_width, which will scale the width of all training images to opt.loadSize (1024) while keeping the aspect ratio. If you want a different setting, please change it by using the --resize_or_crop option. For example, scale_width_and_crop first resizes the image to have width opt.loadSize and then does random cropping of size (opt.fineSize, opt.fineSize). crop skips the resizing step and only performs random cropping. If you don't want any preprocessing, please specify none, which will do nothing other than making sure the image is divisible by 32.

Testing

  • Test the model:
python test.py --name kaggle --label_nc 0 --netG local --ngf 32 --resize_or_crop crop --no_instance --no_flip --fineSize 256

The test results will be saved to a directory here: ./results/kaggle/test_latest/.

Dataset

  • I use the kaggle denoising dirty documents dataset. To train a model on the full dataset, please download it from the official website. After downloading, please put it under the datasets folder with warped images under the directory name train_A and unwarped images under the directory train_B. Your test images are warped images, and should be under the name test_A. Below is an example dataset directory structure.

        .
        ├── ...
        ├── datasets                  
        │   ├── train_A               # warped images
        │   ├── train_B               # unwarped, "ground truth" images
        │   └── test_A                # warped images used for testing
        └── ...
    

Multi-GPU training

  • Train a model using multiple GPUs (bash ./scripts/train_kaggle_256_multigpu.sh):
#!./scripts/train_kaggle_256_multigpu.sh
python train.py --name kaggle_256_multigpu --label_nc 0 --netG local --ngf 32 --resize_or_crop crop --no_instance --no_flip --fineSize 256 --batchSize 32 --gpu_ids 0,1,2,3,4,5,6,7

Training with Automatic Mixed Precision (AMP) for faster speed

  • To train with mixed precision support, please first install apex from: https://github.com/NVIDIA/apex
  • You can then train the model by adding --fp16. For example,
#!./scripts/train_512p_fp16.sh
python -m torch.distributed.launch train.py --name label2city_512p --fp16

In my test case, it trains about 80% faster with AMP on a Volta machine.

More Training/Test Details

  • Flags: see options/train_options.py and options/base_options.py for all the training flags; see options/test_options.py and options/base_options.py for all the test flags.
  • Instance map: we take in both label maps and instance maps as input. If you don't want to use instance maps, please specify the flag --no_instance.
Owner
Thomas Huang
I'm currently a Machine Learning Scientist @alectio. Purdue CS 2019
Thomas Huang
Image Recognition Model Generator

Takes a user-inputted query and generates a machine learning image recognition model that determines if an inputted image is or isn't their query

Christopher Oka 1 Jan 13, 2022
Programa que viabiliza a OCR (Optical Character Reading - leitura óptica de caracteres) de um PDF.

Este programa tem o intuito de ser um modificador de arquivos PDF. Os arquivos PDFs podem ser 3: PDFs verdadeiros - em que podem ser selecionados o ti

Daniel Soares Saldanha 2 Oct 11, 2021
Code for the paper: Fusformer: A Transformer-based Fusion Approach for Hyperspectral Image Super-resolution

Fusformer Code for the paper: "Fusformer: A Transformer-based Fusion Approach for Hyperspectral Image Super-resolution" Plateform Python 3.8.5 + Pytor

Jin-Fan Hu (胡锦帆) 11 Dec 12, 2022
document image degradation

ocrodeg The ocrodeg package is a small Python library implementing document image degradation for data augmentation for handwriting recognition and OC

NVIDIA Research Projects 134 Nov 18, 2022
Write-ups for the SwissHackingChallenge2021 CTF.

SwissHackingChallenge 2021 : Write-ups This repository contains a collection of my write-ups for challenges solved during the SwissHackingChallenge (S

Julien Béguin 3 Jun 07, 2021
This repository contains codes on how to handle mouse event using OpenCV

Handling-Mouse-Click-Events-Using-OpenCV This repository contains codes on how t

Happy N. Monday 3 Feb 15, 2022
The Open Source Framework for Machine Vision

SimpleCV Quick Links: About Installation [Docker] (#docker) Ubuntu Virtual Environment Arch Linux Fedora MacOS Windows Raspberry Pi SimpleCV Shell Vid

Sight Machine 2.6k Dec 31, 2022
Run tesseract with the tesserocr bindings with @OCR-D's interfaces

ocrd_tesserocr Crop, deskew, segment into regions / tables / lines / words, or recognize with tesserocr Introduction This package offers OCR-D complia

OCR-D 38 Oct 14, 2022
governance proposal to make fei redeemable for eth

Feil Proposal 🌲 Abstract Migrate all ETH from Fei protocol-controlled value into Yearn ETH Vault. Allow redemptions of outstanding FEI for yvETH. At

13 Mar 31, 2022
SCOUTER: Slot Attention-based Classifier for Explainable Image Recognition

SCOUTER: Slot Attention-based Classifier for Explainable Image Recognition PDF Abstract Explainable artificial intelligence has been gaining attention

87 Dec 26, 2022
A toolbox of scene text detection and recognition

FudanOCR This toolbox contains the implementations of the following papers: Scene Text Telescope: Text-Focused Scene Image Super-Resolution [Chen et a

FudanVIC Team 170 Dec 26, 2022
nofacedb/faceprocessor is a face recognition engine for NoFaceDB program complex.

faceprocessor nofacedb/faceprocessor is a face recognition engine for NoFaceDB program complex. Tech faceprocessor uses a number of open source projec

NoFaceDB 3 Sep 06, 2021
Scene text detection and recognition based on Extremal Region(ER)

Scene text recognition A real-time scene text recognition algorithm. Our system is able to recognize text in unconstrain background. This algorithm is

HSIEH, YI CHIA 155 Dec 06, 2022
Hand gesture detection project with aweome UI implementation.

an awesome hand gesture detection project for you to be creative! Imagination is the limit to do with this project.

AR Ashraf 39 Sep 26, 2022
TextBoxes re-implement using tensorflow

TextBoxes-TensorFlow TextBoxes re-implementation using tensorflow. This project is greatly inspired by slim project And many functions are modified ba

Gu Xiaodong 44 Dec 29, 2022
Code related to "Have Your Text and Use It Too! End-to-End Neural Data-to-Text Generation with Semantic Fidelity" paper

DataTuner You have just found the DataTuner. This repository provides tools for fine-tuning language models for a task. See LICENSE.txt for license de

81 Jan 01, 2023
Zoom , GoogleMeets에서 Vtuber 데뷔하기

EasyVtuber Facial landmark와 GAN을 이용한 Character Face Generation Google Meets, Zoom 등에서 자신만의 웹툰, 만화 캐릭터로 대화해보세요! 악세사리는 어느정도 추가해도 잘 작동해요! 안타깝게도 RTX 2070

Gunwoo Han 140 Dec 23, 2022
Code for CVPR 2022 paper "Bailando: 3D dance generation via Actor-Critic GPT with Choreographic Memory"

Bailando Code for CVPR 2022 (oral) paper "Bailando: 3D dance generation via Actor-Critic GPT with Choreographic Memory" [Paper] | [Project Page] | [Vi

Li Siyao 237 Dec 29, 2022
Source Code for AAAI 2022 paper "Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching"

Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching This repository is an official implementation of

HKUST-KnowComp 13 Sep 08, 2022
A simple component to display annotated text in Streamlit apps.

Annotated Text Component for Streamlit A simple component to display annotated text in Streamlit apps. For example: Installation First install Streaml

Thiago Teixeira 312 Dec 30, 2022