Source code and dataset for ACL 2019 paper "ERNIE: Enhanced Language Representation with Informative Entities"

Related tags

Text Data & NLPERNIE
Overview

ERNIE

Source code and dataset for "ERNIE: Enhanced Language Representation with Informative Entities"

Reqirements:

  • Pytorch>=0.4.1
  • Python3
  • tqdm
  • boto3
  • requests
  • apex (If you want to use fp16, you should make sure the commit is 79ad5a88e91434312b43b4a89d66226be5f2cc98.)

Prepare Pre-train Data

Run the following command to create training instances.

  # Download Wikidump
  wget https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
  # Download anchor2id
  wget -c https://cloud.tsinghua.edu.cn/f/1c956ed796cb4d788646/?dl=1 -O anchor2id.txt
  # WikiExtractor
  python3 pretrain_data/WikiExtractor.py enwiki-latest-pages-articles.xml.bz2 -o pretrain_data/output -l --min_text_length 100 --filter_disambig_pages -it abbr,b,big --processes 4
  # Modify anchors with 4 processes
  python3 pretrain_data/extract.py 4
  # Preprocess with 4 processes
  python3 pretrain_data/create_ids.py 4
  # create instances
  python3 pretrain_data/create_insts.py 4
  # merge
  python3 code/merge.py

If you want to get anchor2id by yourself, run the following code(this will take about half a day) after python3 pretrain_data/extract.py 4

  # extract anchors
  python3 pretrain_data/utils.py get_anchors
  # query Mediawiki api using anchor link to get wikibase item id. For more details, see https://en.wikipedia.org/w/api.php?action=help.
  python3 pretrain_data/create_anchors.py 256 
  # aggregate anchors 
  python3 pretrain_data/utils.py agg_anchors

Run the following command to pretrain:

  python3 code/run_pretrain.py --do_train --data_dir pretrain_data/merge --bert_model ernie_base --output_dir pretrain_out/ --task_name pretrain --fp16 --max_seq_length 256

We use 8 NVIDIA-2080Ti to pre-train our model and there are 32 instances in each GPU. It takes nearly one day to finish the training (1 epoch is enough).

Pre-trained Model

Download pre-trained knowledge embedding from Google Drive/Tsinghua Cloud and extract it.

tar -xvzf kg_embed.tar.gz

Download pre-trained ERNIE from Google Drive/Tsinghua Cloud and extract it.

tar -xvzf ernie_base.tar.gz

Note that the extraction may be not completed in Windows.

Fine-tune

As most datasets except FewRel don't have entity annotations, we use TAGME to extract the entity mentions in the sentences and link them to their corresponding entitoes in KGs. We provide the annotated datasets Google Drive/Tsinghua Cloud.

tar -xvzf data.tar.gz

In the root directory of the project, run the following codes to fine-tune ERNIE on different datasets.

FewRel:

python3 code/run_fewrel.py   --do_train   --do_lower_case   --data_dir data/fewrel/   --ernie_model ernie_base   --max_seq_length 256   --train_batch_size 32   --learning_rate 2e-5   --num_train_epochs 10   --output_dir output_fewrel   --fp16   --loss_scale 128
# evaluate
python3 code/eval_fewrel.py   --do_eval   --do_lower_case   --data_dir data/fewrel/   --ernie_model ernie_base   --max_seq_length 256   --train_batch_size 32   --learning_rate 2e-5   --num_train_epochs 10   --output_dir output_fewrel   --fp16   --loss_scale 128

TACRED:

python3 code/run_tacred.py   --do_train   --do_lower_case   --data_dir data/tacred   --ernie_model ernie_base   --max_seq_length 256   --train_batch_size 32   --learning_rate 2e-5   --num_train_epochs 4.0   --output_dir output_tacred   --fp16   --loss_scale 128 --threshold 0.4
# evaluate
python3 code/eval_tacred.py   --do_eval   --do_lower_case   --data_dir data/tacred   --ernie_model ernie_base   --max_seq_length 256   --train_batch_size 32   --learning_rate 2e-5   --num_train_epochs 4.0   --output_dir output_tacred   --fp16   --loss_scale 128 --threshold 0.4

FIGER:

python3 code/run_typing.py    --do_train   --do_lower_case   --data_dir data/FIGER   --ernie_model ernie_base   --max_seq_length 256   --train_batch_size 2048   --learning_rate 2e-5   --num_train_epochs 3.0   --output_dir output_figer  --gradient_accumulation_steps 32 --threshold 0.3 --fp16 --loss_scale 128 --warmup_proportion 0.2
# evaluate
python3 code/eval_figer.py    --do_eval   --do_lower_case   --data_dir data/FIGER   --ernie_model ernie_base   --max_seq_length 256   --train_batch_size 2048   --learning_rate 2e-5   --num_train_epochs 3.0   --output_dir output_figer  --gradient_accumulation_steps 32 --threshold 0.3 --fp16 --loss_scale 128 --warmup_proportion 0.2

OpenEntity:

python3 code/run_typing.py    --do_train   --do_lower_case   --data_dir data/OpenEntity   --ernie_model ernie_base   --max_seq_length 128   --train_batch_size 16   --learning_rate 2e-5   --num_train_epochs 10.0   --output_dir output_open --threshold 0.3 --fp16 --loss_scale 128
# evaluate
python3 code/eval_typing.py   --do_eval   --do_lower_case   --data_dir data/OpenEntity   --ernie_model ernie_base   --max_seq_length 128   --train_batch_size 16   --learning_rate 2e-5   --num_train_epochs 10.0   --output_dir output_open --threshold 0.3 --fp16 --loss_scale 128

Some code is modified from the pytorch-pretrained-BERT. You can find the explanation of most parameters in pytorch-pretrained-BERT.

As the annotations given by TAGME have confidence score, we use --threshlod to set the lowest confidence score and choose the annotations whose scores are higher than --threshold. In this experiment, the value is usually 0.3 or 0.4.

The script for the evaluation of relation classification just gives the accuracy score. For the macro/micro metrics, you should use code/score.py which is from tacred repo.

python3 code/score.py gold_file pred_file

You can find gold_file and pred_file on each checkpoint in the output folder (--output_dir).

New Tasks:

If you want to use ERNIE in new tasks, you should follow these steps:

  • Use an entity-linking tool like TAGME to extract the entities in the text
  • Look for the Wikidata ID of the extracted entities
  • Take the text and entities sequence as input data

Here is a quick-start example (code/example.py) using ERNIE for Masked Language Model. We show how to annotate the given sentence with TAGME and build the input data for ERNIE. Note that it will take some time (around 5 mins) to load the model.

# If you haven't installed tagme
pip install tagme
# Run example
python3 code/example.py

Cite

If you use the code, please cite this paper:

@inproceedings{zhang2019ernie,
  title={{ERNIE}: Enhanced Language Representation with Informative Entities},
  author={Zhang, Zhengyan and Han, Xu and Liu, Zhiyuan and Jiang, Xin and Sun, Maosong and Liu, Qun},
  booktitle={Proceedings of ACL 2019},
  year={2019}
}
Owner
THUNLP
Natural Language Processing Lab at Tsinghua University
THUNLP
CoNLL-English NER Task (NER in English)

CoNLL-English NER Task en | ch Motivation Course Project review the pytorch framework and sequence-labeling task practice using the transformers of Hu

Kevin 2 Jan 14, 2022
Gathers machine learning and Tensorflow deep learning models for NLP problems, 1.13 < Tensorflow < 2.0

NLP-Models-Tensorflow, Gathers machine learning and tensorflow deep learning models for NLP problems, code simplify inside Jupyter Notebooks 100%. Tab

HUSEIN ZOLKEPLI 1.7k Dec 30, 2022
Simple bots or Simbots is a library designed to create simple bots using the power of python. This library utilises Intent, Entity, Relation and Context model to create bots .

Simple bots or Simbots is a library designed to create simple chat bots using the power of python. This library utilises Intent, Entity, Relation and

14 Dec 15, 2021
Automated question generation and question answering from Turkish texts using text-to-text transformers

Turkish Question Generation Offical source code for "Automated question generation & question answering from Turkish texts using text-to-text transfor

Open Business Software Solutions 29 Dec 14, 2022
This code is the implementation of Text Emotion Recognition (TER) with linguistic features

APSIPA-TER This code is the implementation of Text Emotion Recognition (TER) with linguistic features. The network model is BERT with a pretrained mod

kenro515 1 Feb 08, 2022
PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

VAENAR-TTS - PyTorch Implementation PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

Keon Lee 67 Nov 14, 2022
Python-zhuyin - An open source Python library that provides a unified interface for converting between Chinese pinyin and Zhuyin (bopomofo)

Python-zhuyin - An open source Python library that provides a unified interface for converting between Chinese pinyin and Zhuyin (bopomofo)

2 Dec 29, 2022
:mag: Transformers at scale for question answering & neural search. Using NLP via a modular Retriever-Reader-Pipeline. Supporting DPR, Elasticsearch, HuggingFace's Modelhub...

Haystack is an end-to-end framework that enables you to build powerful and production-ready pipelines for different search use cases. Whether you want

deepset 6.4k Jan 09, 2023
Nested Named Entity Recognition

Nested Named Entity Recognition Training Dataset: CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark url: https://tianchi.aliyun.

8 Dec 25, 2022
A raytrace framework using taichi language

ti-raytrace The code use Taichi programming language Current implement acceleration lvbh disney brdf How to run First config your anaconda workspace,

蕉太狼 73 Dec 11, 2022
Reproducing the Linear Multihead Attention introduced in Linformer paper (Linformer: Self-Attention with Linear Complexity)

Linear Multihead Attention (Linformer) PyTorch Implementation of reproducing the Linear Multihead Attention introduced in Linformer paper (Linformer:

Kui Xu 58 Dec 23, 2022
Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System

Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System Authors: Yixuan Su, Lei Shu, Elman Mansimov, Arshit Gupta, Deng Cai, Yi-An Lai

Amazon Web Services - Labs 124 Jan 03, 2023
Let Xiao Ai speakers control third-party devices

A stupid way to extend miot/xiaoai. Demo for Panasonic Bath Bully FV-RB20VL1 逆向 Panasonic Smart China,获得控制浴霸的请求信息(HTTP 请求),详见 apps/panasonic.py; 2. 通过

bin 14 Jul 07, 2022
lightweight, fast and robust columnar dataframe for data analytics with online update

streamdf Streamdf is a lightweight data frame library built on top of the dictionary of numpy array, developed for Kaggle's time-series code competiti

23 May 19, 2022
A benchmark for evaluation and comparison of various NLP tasks in Persian language.

Persian NLP Benchmark The repository aims to track existing natural language processing models and evaluate their performance on well-known datasets.

Mofid AI 68 Dec 19, 2022
Simple Annotated implementation of GPT-NeoX in PyTorch

Simple Annotated implementation of GPT-NeoX in PyTorch This is a simpler implementation of GPT-NeoX in PyTorch. We have taken out several optimization

labml.ai 101 Dec 03, 2022
Python functions for summarizing and improving voice dictation input.

Helpmespeak Help me speak uses Python functions for summarizing and improving voice dictation input. Get started with OpenAI gpt-3 OpenAI is a amazing

Margarita Humanitarian Foundation 6 Dec 17, 2022
A natural language modeling framework based on PyTorch

Overview PyText is a deep-learning based NLP modeling framework built on PyTorch. PyText addresses the often-conflicting requirements of enabling rapi

Meta Research 6.4k Jan 08, 2023
NLP-based analysis of poor Chinese movie reviews on Douban

douban_embedding 豆瓣中文影评差评分析 1. NLP NLP(Natural Language Processing)是指自然语言处理,他的目的是让计算机可以听懂人话。 下面是我将2万条豆瓣影评训练之后,随意输入一段新影评交给神经网络,最终AI推断出的结果。 "很好,演技不错

3 Apr 15, 2022
PocketSphinx is a lightweight speech recognition engine, specifically tuned for handheld and mobile devices, though it works equally well on the desktop

molten A minimal, extensible, fast and productive API framework for Python 3. Changelog: https://moltenframework.com/changelog.html Community: https:/

3.2k Dec 28, 2022