End-2-end speech synthesis with recurrent neural networks

Overview

Introduction

New: Interactive demo using Google Colaboratory can be found here

TTS-Cube is an end-2-end speech synthesis system that provides a full processing pipeline to train and deploy TTS models.

It is entirely based on neural networks, requires no pre-aligned data and can be trained to produce audio just by using character or phoneme sequences.

Markdown does not allow embedding of audio files. For a better experience check-out the project's website.

For installation please follow these instructions. Training and usage examples can be found here. A notebook demo can be found here.

Output examples

Encoder outputs:

"Arată că interesul utilizatorilor de internet față de acțiuni ecologiste de genul Earth Hour este unul extrem de ridicat." encoder_output_1

"Pentru a contracara proiectul, Rusia a demarat un proiect concurent, South Stream, în care a încercat să atragă inclusiv o parte dintre partenerii Nabucco." encoder_output_2

Vocoder output (conditioned on gold-standard data)

Note: The mel-spectrum is computed with a frame-shift of 12.5ms. This means that Griffin-Lim reconstruction produces sloppy results at most (regardless on the number of iterations)

original        vocoder

original        vocoder

original        vocoder

End to end decoding

The encoder model is still converging, so right now the examples are still of low quality. We will update the files as soon as we have a stable Encoder model.

synthesized         original(unseen)

synthesized         original(unseen)

synthesized         original(unseen)

synthesized         original(unseen)

Technical details

TTS-Cube is based on concepts described in Tacotron (1 and 2), Char2Wav and WaveRNN, but it's architecture does not stick to the exact recipes:

  • It has a dual-architecture, composed of (a) a module (Encoder) that converts sequences of characters or phonemes into mel-log spectrogram and (b) a RNN-based Vocoder that is conditioned on the spectrogram to produce audio
  • The Encoder is similar to those proposed in Tacotron (Wang et al., 2017) and Char2Wav (Sotelo et al., 2017), but
    • has a lightweight architecture with just a two-layer BDLSTM encoder and a two-layer LSTM decoder
    • uses the guided attention trick (Tachibana et al., 2017), which provides incredibly fast convergence of the attention module (in our experiments we were unable to reach an acceptable model without this trick)
    • does not employ any CNN/pre-net or post-net
    • uses a simple highway connection from the attention to the output of the decoder (which we observed that forces the encoder to actually learn how to produce the mean-values of the mel-log spectrum for particular phones/characters)
  • The initail vocoder was similar to WaveRNN(Kalchbrenner et al., 2018), but instead of modifying the RNN cells (as proposed in their paper), we used two coupled neural networks
  • We are now using Clarinet (Ping et al., 2018)

References

The ParallelWavenet/ClariNet code is adapted from this ClariNet repo.

SHAS: Approaching optimal Segmentation for End-to-End Speech Translation

SHAS: Approaching optimal Segmentation for End-to-End Speech Translation In this repo you can find the code of the Supervised Hybrid Audio Segmentatio

Machine Translation @ UPC 21 Dec 20, 2022
Applied Natural Language Processing in the Enterprise - An O'Reilly Media Publication

Applied Natural Language Processing in the Enterprise This is the companion repo for Applied Natural Language Processing in the Enterprise, an O'Reill

Applied Natural Language Processing in the Enterprise 95 Jan 05, 2023
Semi-automated vocabulary generation from semantic vector models

vec2word Semi-automated vocabulary generation from semantic vector models This script generates a list of potential conlang word forms along with asso

9 Nov 25, 2022
STT for TorchScript is a port of Coqui STT based on DeepSpeech to PyTorch.

st3 STT for TorchScript is a port of Coqui STT based on DeepSpeech to PyTorch. Currently it supports converting pbmm models to pt scripts with integra

Vlad Ki 8 Oct 18, 2021
Harvis is designed to automate your C2 Infrastructure.

Harvis Harvis is designed to automate your C2 Infrastructure, currently using Mythic C2. 📌 What is it? Harvis is a python tool to help you create mul

Thiago Mayllart 99 Oct 06, 2022
This project uses word frequency and Term Frequency-Inverse Document Frequency to summarize a text.

Text Summarizer This project uses word frequency and Term Frequency-Inverse Document Frequency to summarize a text. Team Members This mini-project was

1 Nov 16, 2021
A workshop with several modules to help learn Feast, an open-source feature store

Workshop: Learning Feast This workshop aims to teach users about Feast, an open-source feature store. We explain concepts & best practices by example,

Feast 52 Jan 05, 2023
Code for papers "Generation-Augmented Retrieval for Open-Domain Question Answering" and "Reader-Guided Passage Reranking for Open-Domain Question Answering", ACL 2021

This repo provides the code of the following papers: (GAR) "Generation-Augmented Retrieval for Open-domain Question Answering", ACL 2021 (RIDER) "Read

morning 49 Dec 26, 2022
Code for the paper "Language Models are Unsupervised Multitask Learners"

Status: Archive (code is provided as-is, no updates expected) gpt-2 Code and models from the paper "Language Models are Unsupervised Multitask Learner

OpenAI 16.1k Jan 08, 2023
CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation

CPT This repository contains code and checkpoints for CPT. CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Gener

fastNLP 342 Jan 05, 2023
Dust model dichotomous performance analysis

Dust-model-dichotomous-performance-analysis Using a collated dataset of 90,000 dust point source observations from 9 drylands studies from around the

1 Dec 17, 2021
Library for Russian imprecise rhymes generation

TOM RHYMER Library for Russian imprecise rhymes generation. Quick Start Generate rhymes by any given rhyme scheme (aabb, abab, aaccbb, etc ...): from

Alexey Karnachev 6 Oct 18, 2022
JaQuAD: Japanese Question Answering Dataset

JaQuAD: Japanese Question Answering Dataset for Machine Reading Comprehension (2022, Skelter Labs)

SkelterLabs 84 Dec 27, 2022
A Python wrapper for simple offline real-time dictation (speech-to-text) and speaker-recognition using Vosk.

Simple-Vosk A Python wrapper for simple offline real-time dictation (speech-to-text) and speaker-recognition using Vosk. Check out the official Vosk G

2 Jun 19, 2022
Weakly-supervised Text Classification Based on Keyword Graph

Weakly-supervised Text Classification Based on Keyword Graph How to run? Download data Our dataset follows previous works. For long texts, we follow C

Hello_World 20 Dec 29, 2022
Simple NLP based project without any use of AI

Simple NLP based project without any use of AI

Shripad Rao 1 Apr 26, 2022
Lyrics generation with GPT2-based Transformer

HuggingArtists - Train a model to generate lyrics Create AI-Artist in just 5 minutes! 🚀 Run the demo notebook to train 🚀 Run the GUI demo to test Di

Aleksey Korshuk 65 Dec 19, 2022
A collection of Classical Chinese natural language processing models, including Classical Chinese related models and resources on the Internet.

GuwenModels: 古文自然语言处理模型合集, 收录互联网上的古文相关模型及资源. A collection of Classical Chinese natural language processing models, including Classical Chinese related models and resources on the Internet.

Ethan 66 Dec 26, 2022
Implementation of TF-IDF algorithm to find documents similarity with cosine similarity

NLP learning Trying to learn NLP to use in my projects! Table of Contents About The Project Built With Getting Started Requirements Run Usage License

Faraz Farangizadeh 3 Aug 25, 2022
Model parallel transformers in JAX and Haiku

Table of contents Mesh Transformer JAX Updates Pretrained Models GPT-J-6B Links Acknowledgments License Model Details Zero-Shot Evaluations Architectu

Ben Wang 4.9k Jan 04, 2023