Pixie - A full-featured 2D graphics library for Python

Overview

Pixie - A full-featured 2D graphics library for Python

Pixie is a 2D graphics library similar to Cairo and Skia.

Github Actions

pip install pixie-python

Features:

  • Typesetting and rasterizing text, including styled rich text via spans.
  • Drawing paths, shapes and curves with even-odd and non-zero windings.
  • Pixel-perfect AA quality.
  • Supported file formats are PNG, BMP, JPG, SVG + more in development.
  • Strokes with joins and caps.
  • Shadows, glows and blurs.
  • Complex masking: Subtract, Intersect, Exclude.
  • Complex blends: Darken, Multiply, Color Dodge, Hue, Luminosity... etc.
  • Many operations are SIMD accelerated.

Image file formats

Format Read Write
PNG
JPEG
BMP
GIF
SVG

Font file formats

Format Read
TTF
OTF
SVG

Joins and caps

Supported Caps:

  • Butt
  • Round
  • Square

Supported Joins:

  • Miter (with miter angle limit)
  • Bevel
  • Round

Blending & masking

Supported Blend Modes:

  • Normal
  • Darken
  • Multiply
  • ColorBurn
  • Lighten
  • Screen
  • Color Dodge
  • Overlay
  • Soft Light
  • Hard Light
  • Difference
  • Exclusion
  • Hue
  • Saturation
  • Color
  • Luminosity

Supported Mask Modes:

  • Mask
  • Overwrite
  • Subtract Mask
  • Intersect Mask
  • Exclude Mask

SVG style paths:

Format Supported Description
M m move to
L l line to
h h horizontal line to
V v vertical line to
C c S s cublic to
Q q T t quadratic to
A a arc to
z close path

Testing

pytest

Examples

git clone https://github.com/treeform/pixie-python to run examples.

Text

python examples/text.py

font = pixie.read_font("examples/data/Roboto-Regular_1.ttf")
font.size = 20

text = "Typesetting is the arrangement and composition of text in graphic design and publishing in both digital and traditional medias."

image.fill_text(
    font,
    text,
    bounds = pixie.Vector2(180, 180),
    transform = pixie.translate(10, 10)
)

example output

Text spans

python examples/text_spans.py

typeface = pixie.read_typeface("examples/data/Ubuntu-Regular_1.ttf")

def make_font(typeface, size, color):
    font = typeface.new_font()
    font.size = size
    font.paints[0].color = color
    return font

spans = pixie.SeqSpan()
spans.append(pixie.Span(
    "verb [with object] ",
    make_font(typeface, 12, pixie.Color(0.78125, 0.78125, 0.78125, 1))
))
spans.append(pixie.Span(
    "strallow\n",
    make_font(typeface, 36, pixie.Color(0, 0, 0, 1))
))
spans.append(pixie.Span(
    "\nstral·low\n",
    make_font(typeface, 13, pixie.Color(0, 0.5, 0.953125, 1))
))
spans.append(pixie.Span(
    "\n1. free (something) from restrictive restrictions \"the regulations are intended to strallow changes in public policy\" ",
    make_font(typeface, 14, pixie.Color(0.3125, 0.3125, 0.3125, 1))
))

image.arrangement_fill_text(
    spans.typeset(bounds = pixie.Vector2(180, 180)),
    transform = pixie.translate(10, 10)
)

example output

Square

python examples/square.py

paint = pixie.Paint(pixie.PK_SOLID)
paint.color = pixie.Color(1, 0, 0, 1)

ctx = image.new_context()
ctx.fill_style = paint

ctx.fill_rect(50, 50, 100, 100)

example output

Line

python examples/line.py

paint = pixie.Paint(pixie.PK_SOLID)
paint.color = pixie.parse_color("#FF5C00")

ctx = image.new_context()
ctx.stroke_style = paint
ctx.line_width = 10

ctx.stroke_segment(25, 25, 175, 175)

example output

Rounded rectangle

python examples/rounded_rectangle.py

paint = pixie.Paint(pixie.PK_SOLID)
paint.color = pixie.Color(0, 1, 0, 1)

ctx = image.new_context()
ctx.fill_style = paint
ctx.rounded_rect(50, 50, 100, 100, 25, 25, 25, 25)
ctx.fill()

example output

Heart

python examples/heart.py

path = pixie.parse_path(
    """
    M 20 60
    A 40 40 90 0 1 100 60
    A 40 40 90 0 1 180 60
    Q 180 120 100 180
    Q 20 120 20 60
    z
    """
)

paint = pixie.Paint(pixie.PK_SOLID)
paint.color = pixie.parse_color("#FC427B")

image.fill_path(path, paint)

example output

Masking

python examples/masking.py

lines = pixie.Image(200, 200)
lines.fill(pixie.parse_color("#FC427B"))

paint = pixie.Paint(pixie.PK_SOLID)
paint.color = pixie.parse_color("#F8D1DD")

ctx = lines.new_context()
ctx.stroke_style = paint
ctx.line_width = 30

ctx.stroke_segment(25, 25, 175, 175)
ctx.stroke_segment(25, 175, 175, 25)

path = pixie.parse_path(
    """
    M 20 60
    A 40 40 90 0 1 100 60
    A 40 40 90 0 1 180 60
    Q 180 120 100 180
    Q 20 120 20 60
    z
    """
)

mask = pixie.Mask(200, 200)
mask.fill_path(path)

lines.mask_draw(mask)
image.draw(lines)

example output

Gradient

python examples/gradient.py

paint = pixie.Paint(pixie.PK_GRADIENT_RADIAL)

paint.gradient_handle_positions.append(pixie.Vector2(100, 100))
paint.gradient_handle_positions.append(pixie.Vector2(200, 100))
paint.gradient_handle_positions.append(pixie.Vector2(100, 200))

paint.gradient_stops.append(pixie.ColorStop(pixie.Color(1, 0, 0, 1), 0))
paint.gradient_stops.append(pixie.ColorStop(pixie.Color(1, 0, 0, 0.15625), 1))

path = pixie.parse_path(
    """
    M 20 60
    A 40 40 90 0 1 100 60
    A 40 40 90 0 1 180 60
    Q 180 120 100 180
    Q 20 120 20 60
    z
    """
)

image.fill_path(path, paint)

example output

Image tiled

python examples/image_tiled.py

path = pixie.Path()
path.polygon(100, 100, 70, 8)

paint = pixie.Paint(pixie.PK_IMAGE_TILED)
paint.image = pixie.read_image("examples/data/baboon.png")
paint.image_mat = pixie.scale(0.08, 0.08)

image.fill_path(path, paint)

example output

Shadow

python examples/shadow.py

path = pixie.Path()
path.polygon(100, 100, 70, sides = 8)

paint = pixie.Paint(pixie.PK_SOLID)
paint.color = pixie.Color(1, 1, 1, 1)

polygon_image = pixie.Image(200, 200)
polygon_image.fill_path(path, paint)

shadow = polygon_image.shadow(
    offset = pixie.Vector2(2, 2),
    spread = 2,
    blur = 10,
    color = pixie.Color(0, 0, 0, 0.78125)
)

image.draw(shadow)
image.draw(polygon_image)

example output

Blur

python examples/blur.py

trees = pixie.read_image("examples/data/trees.png")

path = pixie.Path()
path.polygon(100, 100, 70, 6)

mask = pixie.Mask(200, 200)
mask.fill_path(path)

blur = trees.copy()
blur.blur(20)
blur.mask_draw(mask)

image.draw(trees)
image.draw(blur)

example output

Tiger

python examples/tiger.py

tiger = pixie.read_image("examples/data/tiger.svg")

image.draw(
    tiger,
    pixie.translate(100, 100) *
    pixie.scale(0.2, 0.2) *
    pixie.translate(-450, -450)
)

example output

Comments
  • Having some trouble with vertical alignment

    Having some trouble with vertical alignment

    I'm trying to have some text with two lines, aligned to the bottom of some bounds, and with a small line-height so that the two lines are closer together. However the text is not going where I would expect. It looks like it's going too downwards. When aligned to bottom it even goes outside the bounds. If I leave the line-height to default it also doesn't look right. Am I missing something?

    Here's an example and it's output:

    import pixie
    
    image = pixie.Image(800, 800)
    image.fill(pixie.Color(1, 1, 1, 1))
    
    paint = pixie.Paint(pixie.PK_SOLID)
    paint.color = pixie.Color(1, 0, 0, 1)
    ctx = image.new_context()
    ctx.line_width = 1
    ctx.stroke_style = paint
    ctx.stroke_rect(0, 266, 800, 318)
    
    text = "AbCd\naBcD"
    
    font = pixie.read_font("./Inter-Bold.otf")
    font.size = 182
    font.line_height = 140
    
    font.paint.color = pixie.Color(1, 0, 0, 1)
    image.fill_text(
        font,
        text,
        bounds = pixie.Vector2(800, 318),
        h_align = pixie.HA_CENTER,
        v_align = pixie.VA_TOP,
        transform = pixie.translate(0, 266)
    )
    
    font.paint.color = pixie.Color(0, 1, 0, 1)
    image.fill_text(
        font,
        text,
        bounds = pixie.Vector2(800, 318),
        h_align = pixie.HA_CENTER,
        v_align = pixie.VA_MIDDLE,
        transform = pixie.translate(0, 266)
    )
    
    font.paint.color = pixie.Color(0, 0, 1, 1)
    image.fill_text(
        font,
        text,
        bounds = pixie.Vector2(800, 318),
        h_align = pixie.HA_CENTER,
        v_align = pixie.VA_BOTTOM,
        transform = pixie.translate(0, 266)
    )
    
    image.write_file("out.png")
    

    result

    opened by EnricoMonese 4
  • Unable to load jpg on Linux

    Unable to load jpg on Linux

    Installed pixie-python via pip, however when I try to load a JPG I get the following exception.

    Exception has occurred: PixieError
    Decoding JPG requires -d:pixieUseStb
    

    I guess pixie is using std image library under the hood and the package did not get compiled with the correct options to support this?

    opened by EdMUK 3
  • genny supporting dart ffi

    genny supporting dart ffi

    Hi treeform, very nice lib (looking at the python output), I have recently discovered Flutter over dart language, they create a nice vibrant UI experience. BUT:

    its ffi lib is just so ugly, shudders! it's ffi interop is very verbose and looks annoying to get done, at the same time, devs seem to flock to this (relatively) new platform but not many want to get hands dirty in C code, so Nim to the rescue right?

    Can genny also support the dart programming language? it's just generating a lot of ugly boilerplate code.

    I think it's a chance to get more people to use Nim, and thereby building more libs and contributing to it, which was one of your purposes with genny.

    Aside from that, I personally want to leverage Nim libraries that i and others have written, and use dart and flutter mainly for the GUI story (though in terms of features, dart looks to be a decent language. unfortunately for dart, in terms of syntax - verbose like java and I think no templates, but this is just first impressions.)

    opened by kobi2187 2
  • support encodeImage method

    support encodeImage method

    I see there is an encodeImage proc in the nim library, would it be possible to support that as well as the already existing write_file() in the python layer?

    https://nimdocs.com/treeform/pixie/pixie.html#encodeImage%2CImage%2CFileFormat

    opened by RobBrazier 2
  • OSError: /lib/x86_64-linux-gnu/libm.so.6: version `GLIBC_2.29' not found on Google Colab

    OSError: /lib/x86_64-linux-gnu/libm.so.6: version `GLIBC_2.29' not found on Google Colab

    import pixie gives error:

    ---------------------------------------------------------------------------
    
    OSError                                   Traceback (most recent call last)
    
    <ipython-input-14-4833f4429f21> in <module>()
    ----> 1 import pixie
          2 
          3 
    
    3 frames
    
    /usr/lib/python3.7/ctypes/__init__.py in __init__(self, name, mode, handle, use_errno, use_last_error)
        362 
        363         if handle is None:
    --> 364             self._handle = _dlopen(self._name, mode)
        365         else:
        366             self._handle = handle
    
    OSError: /lib/x86_64-linux-gnu/libm.so.6: version `GLIBC_2.29' not found (required by /usr/local/lib/python3.7/dist-packages/pixie/libpixie.so)
    

    https://i.imgur.com/N1ue3Ce.png

    opened by arye321 2
  • module 'pixie' has no attribute 'PK_SOLID'

    module 'pixie' has no attribute 'PK_SOLID'

    This is the source code:

    import pixie
    
    image = pixie.Image(200, 200)
    image.fill(pixie.Color(1, 1, 1, 1))
    
    paint = pixie.Paint(pixie.PK_SOLID)
    paint.color = pixie.Color(1, 0, 0, 1)
    
    ctx = image.new_context()
    ctx.fill_style = paint
    
    ctx.fill_rect(50, 50, 100, 100)
    
    image.write_file("examples/square.png")
    

    I got the following results: Traceback (most recent call last): File "F:\Python\Python Project\Test\test.py", line 6, in paint = pixie.Paint(pixie.PK_SOLID) AttributeError: module 'pixie' has no attribute 'PK_SOLID'

    opened by ZaneHuangPro 1
  • Request: Text h_align = pixie.JUSTIFY_ALIGN

    Request: Text h_align = pixie.JUSTIFY_ALIGN

    Would be nice if add this alignment style, also give access to Arrangement attributes(selectionRects, lines, positions).

    I've made this little library for making this feature for me, it behaves like the Microsoft Word Office.

    import
        nimpy,
        pixie,
        unicode
    
    pyExportModule("pixie_utils")
    
    const
        LF = Rune(10)
        NR = Rune(0)
    
    proc justifyArrangement*(arrangement: Arrangement, maxWidth: float32) {.raises: [].} =
        proc right(rect: Rect): float32 =
            rect.x + rect.w
    
        let
            runes: ptr = arrangement.runes.addr
            positions: ptr = arrangement.positions.addr
            rects: ptr = arrangement.selectionRects.addr
            last_lineId: int = arrangement.lines.len-1
        var
            rune, last_rune: Rune
            last_wordRuneId: int
            spaces_idx: seq[int]
            inc_width, space_width, line_width, x_offset: float32
        
        for lineId, (start, stop) in arrangement.lines:
            last_rune = runes[stop]
    
            # This line must not be justified, if it is the last or if the last rune is a breakline char.
            if lineId == last_lineId or last_rune.uint32 == LF.uint32:
                continue
    
            echo runes[start..stop]
            # Get the spaces indexes of this line to increase their width, and get the line width.
            spaces_idx = @[]
            last_rune = NR
            for r_id in start..stop:
                rune = runes[r_id]
                if not rune.isWhiteSpace():
                    if last_rune.isWhiteSpace():
                        spaces_idx.add(r_id-1)
                    last_wordRuneId = r_id
                last_rune = runes[r_id]
    
            line_width = rects[last_wordRuneId].right
    
            echo "Line spaces: ", spaces_idx.len
            if spaces_idx.len > 0:
                # Get the amount of pixels/units to increase each space width in the middle of the line.
                inc_width = (maxWidth - line_width) / spaces_idx.len.float32
    
                if inc_width > 0:
                    space_width = rects[spaces_idx[0]].w + inc_width
    
                    # Adjust the runes X position
                    x_offset = 0
                    for r_id in spaces_idx[0]..stop:
                        positions[r_id].x += x_offset
    
                        if r_id in spaces_idx:
                            rects[r_id].x += x_offset
                            rects[r_id].w = space_width
                            x_offset += inc_width
                        else:
                            rects[r_id].x += x_offset
    
    proc justifyArrangement(arrangement_ref: int, maxWidth: float32) {.exportpy: "justifyArrangement".} =
        justifyArrangement(cast[Arrangement](arrangement_ref), maxWidth)
    
    opened by IagoBeuller 0
  • Request: image.to_bytes() function

    Request: image.to_bytes() function

    I need the bytes of the images, for example, use them in pillow or pygame.

    I've made this little library for making this feature for me, it gets the image data bytes as well the png file bytes.

    import
        nimpy,
        pixie
    
    pyExportModule("pixie_utils")
    
    proc getImageBytes*(image: Image, format: string = "png"): string {.raises: [PixieError].} =
      # Gets the bytes from image.
      let encodeFormat = case format:
        of "png": PngFormat
        of "bmp": BmpFormat
        of "jpg", "jpeg": JpegFormat
        of "qoi": QoiFormat
        of "ppm": PpmFormat
        else:
          raise newException(PixieError, "Unsupported image format")
    
      result = image.encodeImage(encodeFormat)
    
    proc getImageData*(image: Image): string {.raises: [].} =
      # Gets the image data as bytes.
      result = newString(image.width * image.height * 4)
      var
        i = 0
        rgba: ColorRGBA
      
      for color in image.data:
        rgba = color.rgba()
        result[i] = rgba.r.char
        result[i+1] = rgba.g.char
        result[i+2] = rgba.b.char
        result[i+3] = rgba.a.char
        i += 4
    
    proc getImageBytes(image_ref: int, format: string = "png"): string {.exportpy: "getImageBytes".} =
        result = getImageBytes(cast[Image](image_ref), format)
    
    proc getImageData(image_ref: int): string {.exportpy: "getImageData".} =
        result = getImageData(cast[Image](image_ref))
    
    opened by IagoBeuller 0
  • Can I do Image Mosaic Using this library?

    Can I do Image Mosaic Using this library?

    Hi,

    If I have known the related offset of translation and angle in pixels between centers of 2 images, can I use this library to generate a mosaic without explicitly considering allocating a big matrix matching to final image size, compensating for non-integer offset values, and converting the offset between image centers to left-up image origin?

    Now, I'm doing these trivial things. It's fragile and troublesome.

    opened by HikariS97 0
Releases(4.3.0)
  • 4.3.0(May 24, 2022)

    What's Changed

    • 4.3.0 by @guzba in https://github.com/treeform/pixie-python/pull/21

    Full Changelog: https://github.com/treeform/pixie-python/compare/4.0.1...4.3.0

    Source code(tar.gz)
    Source code(zip)
  • 4.0.1(Feb 23, 2022)

    What's Changed

    • 4.0.1 by @guzba in https://github.com/treeform/pixie-python/pull/18

    Full Changelog: https://github.com/treeform/pixie-python/compare/3.1.4...4.0.1

    Source code(tar.gz)
    Source code(zip)
  • 3.1.4(Feb 6, 2022)

    What's Changed

    • pixie 3.1.4 by @guzba in https://github.com/treeform/pixie-python/pull/16

    Full Changelog: https://github.com/treeform/pixie-python/compare/3.0.2...3.1.4

    Source code(tar.gz)
    Source code(zip)
  • 3.0.2(Oct 28, 2021)

    What's Changed

    • font.paint by @guzba in https://github.com/treeform/pixie-python/pull/14

    Full Changelog: https://github.com/treeform/pixie-python/compare/0.1.4...3.0.2

    Source code(tar.gz)
    Source code(zip)
Owner
treeform
I like the Nim programming language.
treeform
Ackermann Line Follower Robot Simulation.

Ackermann Line Follower Robot This is a simulation of a line follower robot that works with steering control based on Stanley: The Robot That Won the

Lucas Mazzetto 2 Apr 16, 2022
An easy to use an (hopefully useful) captcha solution for pyTelegramBotAPI

pyTelegramBotCAPTCHA An easy to use and (hopefully useful) image CAPTCHA soltion for pyTelegramBotAPI. Installation: pip install pyTelegramBotCAPTCHA

29 Dec 26, 2022
LEARN OPENCV IN 3 HOURS USING PYTHON - INCLUDING EXAMPLE PROJECTS

LEARN OPENCV IN 3 HOURS USING PYTHON - INCLUDING EXAMPLE PROJECTS

Murtaza Hassan 815 Dec 29, 2022
Some codes from PyImageSearch course's and external projects.

👨‍💻 Some codes and projects 👨‍💻 💡 Technologies 📜 Projects 📍 Chrome Dinosaur Controller 📦 Script 📍 Coins Counter 📦 Script 🤓 Author Lucas Biv

Lucas Bivar 25 Oct 24, 2021
Apply different text recognition services to images of handwritten documents.

Handprint The Handwritten Page Recognition Test is a command-line program that invokes HTR (handwritten text recognition) services on images of docume

Caltech Library 117 Jan 02, 2023
Page to PAGE Layout Analysis Tool

P2PaLA Page to PAGE Layout Analysis (P2PaLA) is a toolkit for Document Layout Analysis based on Neural Networks. 💥 Try our new DEMO for online baseli

Lorenzo Quirós Díaz 180 Nov 24, 2022
Fun program to overlay a mask to yourself using a webcam

Superhero Mask Overlay Description Simple project made for fun. It consists of placing a mask (a PNG image with transparent background) on your face.

KB Kwan 10 Dec 01, 2022
Bu uygulamada Python ve Opencv kullanarak bilgisayar kamerasından yüz tespiti yapıyoruz.

opencv_yuz_bulma Bu uygulamada Python ve Opencv kullanarak bilgisayar kamerasından yüz tespiti yapıyoruz. Bilgisarın kendi kamerasını kullanmak için;

Ahmet Haydar Ornek 6 Apr 16, 2022
Optical character recognition for Japanese text, with the main focus being Japanese manga

Manga OCR Optical character recognition for Japanese text, with the main focus being Japanese manga. It uses a custom end-to-end model built with Tran

Maciej Budyś 327 Jan 01, 2023
Face Recognizer using Opencv Python

Face Recognizer using Opencv Python The first step create your own dataset with file open-cv-create_dataset second step You can put the photo accordin

Han Izza 2 Nov 16, 2021
Can We Find Neurons that Cause Unrealistic Images in Deep Generative Networks?

Can We Find Neurons that Cause Unrealistic Images in Deep Generative Networks? Artifact Detection/Correction - Offcial PyTorch Implementation This rep

CHOI HWAN IL 23 Dec 20, 2022
Detect textlines in document images

Textline Detection Detect textlines in document images Introduction This tool performs border, region and textline detection from document image data

QURATOR-SPK 70 Jun 30, 2022
Volume Control using OpenCV

Gesture-Volume-Control Volume Control using OpenCV Here i made volume control using Python and OpenCV in which we can control the volume of our laptop

Mudit Sinha 3 Oct 10, 2021
Camera Intrinsic Calibration and Hand-Eye Calibration in Pybullet

This repository is mainly for camera intrinsic calibration and hand-eye calibration. Synthetic experiments are conducted in PyBullet simulator. 1. Tes

CAI Junhao 7 Oct 03, 2022
TableBank: A Benchmark Dataset for Table Detection and Recognition

TableBank TableBank is a new image-based table detection and recognition dataset built with novel weak supervision from Word and Latex documents on th

844 Jan 04, 2023
A simple Digits Recogniser made in Python

⭐ Python Digit Recogniser A simple digit Recogniser made in Python Demo Run Locally Clone the project git clone https://github.com/yashraj-n/python-

Yashraj narke 4 Nov 29, 2021
color detection using python

colordetection color detection using python In this color detection Python project, we are going to build an application through which you can automat

Ruchith Kumar 1 Nov 04, 2021
OCRmyPDF adds an OCR text layer to scanned PDF files, allowing them to be searched

OCRmyPDF adds an OCR text layer to scanned PDF files, allowing them to be searched or copy-pasted. ocrmypdf # it's a scriptable c

jbarlow83 7.9k Jan 03, 2023
This is a Computer vision package that makes its easy to run Image processing and AI functions. At the core it uses OpenCV and Mediapipe libraries.

CVZone This is a Computer vision package that makes its easy to run Image processing and AI functions. At the core it uses OpenCV and Mediapipe librar

CVZone 648 Dec 30, 2022
POT : Python Optimal Transport

This open source Python library provide several solvers for optimization problems related to Optimal Transport for signal, image processing and machine learning.

Python Optimal Transport 1.7k Jan 04, 2023