A collection of extensions and data-loaders for few-shot learning & meta-learning in PyTorch

Overview

Torchmeta

PyPI Build Status Documentation

A collection of extensions and data-loaders for few-shot learning & meta-learning in PyTorch. Torchmeta contains popular meta-learning benchmarks, fully compatible with both torchvision and PyTorch's DataLoader.

Features

  • A unified interface for both few-shot classification and regression problems, to allow easy benchmarking on multiple problems and reproducibility.
  • Helper functions for some popular problems, with default arguments from the literature.
  • An thin extension of PyTorch's Module, called MetaModule, that simplifies the creation of certain meta-learning models (e.g. gradient based meta-learning methods). See the MAML example for an example using MetaModule.

Datasets available

Installation

You can install Torchmeta either using Python's package manager pip, or from source. To avoid any conflict with your existing Python setup, it is suggested to work in a virtual environment with virtualenv. To install virtualenv:

pip install --upgrade virtualenv
virtualenv venv
source venv/bin/activate

Requirements

  • Python 3.6 or above
  • PyTorch 1.4 or above
  • Torchvision 0.5 or above

Using pip

This is the recommended way to install Torchmeta:

pip install torchmeta

From source

You can also install Torchmeta from source. This is recommended if you want to contribute to Torchmeta.

git clone https://github.com/tristandeleu/pytorch-meta.git
cd pytorch-meta
python setup.py install

Example

Minimal example

This minimal example below shows how to create a dataloader for the 5-shot 5-way Omniglot dataset with Torchmeta. The dataloader loads a batch of randomly generated tasks, and all the samples are concatenated into a single tensor. For more examples, check the examples folder.

from torchmeta.datasets.helpers import omniglot
from torchmeta.utils.data import BatchMetaDataLoader

dataset = omniglot("data", ways=5, shots=5, test_shots=15, meta_train=True, download=True)
dataloader = BatchMetaDataLoader(dataset, batch_size=16, num_workers=4)

for batch in dataloader:
    train_inputs, train_targets = batch["train"]
    print('Train inputs shape: {0}'.format(train_inputs.shape))    # (16, 25, 1, 28, 28)
    print('Train targets shape: {0}'.format(train_targets.shape))  # (16, 25)

    test_inputs, test_targets = batch["test"]
    print('Test inputs shape: {0}'.format(test_inputs.shape))      # (16, 75, 1, 28, 28)
    print('Test targets shape: {0}'.format(test_targets.shape))    # (16, 75)

Advanced example

Helper functions are only available for some of the datasets available. However, all of them are available through the unified interface provided by Torchmeta. The variable dataset defined above is equivalent to the following

from torchmeta.datasets import Omniglot
from torchmeta.transforms import Categorical, ClassSplitter, Rotation
from torchvision.transforms import Compose, Resize, ToTensor
from torchmeta.utils.data import BatchMetaDataLoader

dataset = Omniglot("data",
                   # Number of ways
                   num_classes_per_task=5,
                   # Resize the images to 28x28 and converts them to PyTorch tensors (from Torchvision)
                   transform=Compose([Resize(28), ToTensor()]),
                   # Transform the labels to integers (e.g. ("Glagolitic/character01", "Sanskrit/character14", ...) to (0, 1, ...))
                   target_transform=Categorical(num_classes=5),
                   # Creates new virtual classes with rotated versions of the images (from Santoro et al., 2016)
                   class_augmentations=[Rotation([90, 180, 270])],
                   meta_train=True,
                   download=True)
dataset = ClassSplitter(dataset, shuffle=True, num_train_per_class=5, num_test_per_class=15)
dataloader = BatchMetaDataLoader(dataset, batch_size=16, num_workers=4)

Note that the dataloader, receiving the dataset, remains the same.

Citation

Tristan Deleu, Tobias Würfl, Mandana Samiei, Joseph Paul Cohen, and Yoshua Bengio. Torchmeta: A Meta-Learning library for PyTorch, 2019 [ArXiv]

If you want to cite Torchmeta, use the following Bibtex entry:

@misc{deleu2019torchmeta,
  title={{Torchmeta: A Meta-Learning library for PyTorch}},
  author={Deleu, Tristan and W\"urfl, Tobias and Samiei, Mandana and Cohen, Joseph Paul and Bengio, Yoshua},
  year={2019},
  url={https://arxiv.org/abs/1909.06576},
  note={Available at: https://github.com/tristandeleu/pytorch-meta}
}
Riemannian Adaptive Optimization Methods with pytorch optim

geoopt Manifold aware pytorch.optim. Unofficial implementation for “Riemannian Adaptive Optimization Methods” ICLR2019 and more. Installation Make sur

642 Jan 03, 2023
3D-RETR: End-to-End Single and Multi-View3D Reconstruction with Transformers

3D-RETR: End-to-End Single and Multi-View 3D Reconstruction with Transformers (BMVC 2021) Zai Shi*, Zhao Meng*, Yiran Xing, Yunpu Ma, Roger Wattenhofe

Zai Shi 36 Dec 21, 2022
GPU-accelerated PyTorch implementation of Zero-shot User Intent Detection via Capsule Neural Networks

GPU-accelerated PyTorch implementation of Zero-shot User Intent Detection via Capsule Neural Networks This repository implements a capsule model Inten

Joel Huang 15 Dec 24, 2022
ocaml-torch provides some ocaml bindings for the PyTorch tensor library.

ocaml-torch provides some ocaml bindings for the PyTorch tensor library. This brings to OCaml NumPy-like tensor computations with GPU acceleration and tape-based automatic differentiation.

Laurent Mazare 369 Jan 03, 2023
Fast, general, and tested differentiable structured prediction in PyTorch

Torch-Struct: Structured Prediction Library A library of tested, GPU implementations of core structured prediction algorithms for deep learning applic

HNLP 1.1k Jan 07, 2023
Differentiable SDE solvers with GPU support and efficient sensitivity analysis.

PyTorch Implementation of Differentiable SDE Solvers This library provides stochastic differential equation (SDE) solvers with GPU support and efficie

Google Research 1.2k Jan 04, 2023
You like pytorch? You like micrograd? You love tinygrad! ❤️

For something in between a pytorch and a karpathy/micrograd This may not be the best deep learning framework, but it is a deep learning framework. Due

George Hotz 9.7k Jan 05, 2023
lookahead optimizer (Lookahead Optimizer: k steps forward, 1 step back) for pytorch

lookahead optimizer for pytorch PyTorch implement of Lookahead Optimizer: k steps forward, 1 step back Usage: base_opt = torch.optim.Adam(model.parame

Liam 318 Dec 09, 2022
higher is a pytorch library allowing users to obtain higher order gradients over losses spanning training loops rather than individual training steps.

higher is a library providing support for higher-order optimization, e.g. through unrolled first-order optimization loops, of "meta" aspects of these

Facebook Research 1.5k Jan 03, 2023
PyTorch implementations of normalizing flow and its variants.

PyTorch implementations of normalizing flow and its variants.

Tatsuya Yatagawa 55 Dec 01, 2022
A pure Python implementation of Compact Bilinear Pooling and Count Sketch for PyTorch.

Compact Bilinear Pooling for PyTorch. This repository has a pure Python implementation of Compact Bilinear Pooling and Count Sketch for PyTorch. This

Grégoire Payen de La Garanderie 234 Dec 07, 2022
Fast and Easy-to-use Distributed Graph Learning for PyTorch Geometric

Fast and Easy-to-use Distributed Graph Learning for PyTorch Geometric

Quiver Team 221 Dec 22, 2022
A simple way to train and use PyTorch models with multi-GPU, TPU, mixed-precision

🤗 Accelerate was created for PyTorch users who like to write the training loop of PyTorch models but are reluctant to write and maintain the boilerplate code needed to use multi-GPUs/TPU/fp16.

Hugging Face 3.5k Jan 08, 2023
Differentiable ODE solvers with full GPU support and O(1)-memory backpropagation.

PyTorch Implementation of Differentiable ODE Solvers This library provides ordinary differential equation (ODE) solvers implemented in PyTorch. Backpr

Ricky Chen 4.4k Jan 04, 2023
A tutorial on "Bayesian Compression for Deep Learning" published at NIPS (2017).

Code release for "Bayesian Compression for Deep Learning" In "Bayesian Compression for Deep Learning" we adopt a Bayesian view for the compression of

Karen Ullrich 190 Dec 30, 2022
Training PyTorch models with differential privacy

Opacus is a library that enables training PyTorch models with differential privacy. It supports training with minimal code changes required on the cli

1.3k Dec 29, 2022
Tutorial for surrogate gradient learning in spiking neural networks

SpyTorch A tutorial on surrogate gradient learning in spiking neural networks Version: 0.4 This repository contains tutorial files to get you started

Friedemann Zenke 203 Nov 28, 2022
PyTorch toolkit for biomedical imaging

farabio is a minimal PyTorch toolkit for out-of-the-box deep learning support in biomedical imaging. For further information, see Wikis and Docs.

San Askaruly 47 Dec 28, 2022
Pytorch implementation of Distributed Proximal Policy Optimization

Pytorch-DPPO Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286 Using PPO with clip loss (from https

Alexis David Jacq 164 Jan 05, 2023
torch-optimizer -- collection of optimizers for Pytorch

torch-optimizer torch-optimizer -- collection of optimizers for PyTorch compatible with optim module. Simple example import torch_optimizer as optim

Nikolay Novik 2.6k Jan 03, 2023