Code and data for the paper "Hearing What You Cannot See"

Overview

Hearing What You Cannot See: Acoustic Vehicle Detection Around Corners

Public repository of the paper "Hearing What You Cannot See: Acoustic Vehicle Detection Around Corners" (IEEE Robotics and Automation Letters 2021, see DOI: 10.1109/LRA.2021.3062254 and arxiv). For a short and intuitive introduction of our main ideas and online prediction results, we recommend to watch our supplementary video on Youtube: Hearing What You Cannot See.

We present a data-driven acoustic detection method that can detect an approaching vehicle before it enters line-of-sight, e.g. while hidden behind a blind corner, in real-world outdoor conditions. The code available here can be used to reproduce the results of our approach. We also provide our novel audio-visual dataset (OVAD - occluded vehicle acoustic detection) collected in outdoor urban environments with a 56-microphone array mounted on our research vehicle.

Environment schematic as depicted in the paper

Dataset

The dataset provided within the scope of this publication is an audio-visual set of real world traffic scenarios. You can download the data here: https://surfdrive.surf.nl/files/index.php/s/XRdrcDCHaFQMgJz

The data is prepared for download in three separate zip files:

  • ovad_dataset_audio.zip (~10GB) - Full 56-channel audio data (WAV-format, up to 10 seconds long) of all samples in the test set (83 static, 59 dynamic) and the detections per frame of our visual baseline as json-files.
  • ovad_dataset_video.zip (0.5GB) - Anonymized videos of the vehicle front-facing camera corresponding to the data in the ovad_dataset_audio.zip. Note: contains the same DataLog.csv as the audio zip-file.
  • ovad_dataset_samples.zip (8GB) - 1 second 56-channel audio data (WAV-format) of all samples.

The data was recorded at five T-junction locations with blind corners around the city of Delft, Netherlands. At these locations, the audio-visual recordings are made both when the ego-vehicle is stationary (SA1, SB1, ...) and moving towards the T-junction (DA1, DB1, ...). The table below summarizes the details of the dataset per location.

Location Name Location Abreviation Enumeration Coordinates Recording Date Amount (l,n,r)
Anna Boogerd SA1/DA1 00/05 52.01709452973826, 4.3555564919338465 12.12.2019/11.08.2020 14,30,16/19,37,19
Kwekerijstraat SA2/DA2 01/06 52.00874379638945, 4.353009285502861 16.01.2020/16.01.2020 22,49,19/7,13,8
Willem Dreeslaan SB1/DB1 02/07 51.981244475986784, 4.366977041151884 12.12.2019/11.08.2020 17,32,24/18,35,18
Vermeerstraat SB2/DB2 03/08 52.01649109239065, 4.361755580741086 16.01.2020/16.01.2020 28,43,27/10,22,12
Geerboogerd SB3/DB3 04/09 52.01730429561088, 4.354045642003781 12.12.2019/11.08.2020 22,45,23/19,36,19

Structure ovad_dataset_audio.zip and ovad_dataset_video.zip

As described in the paper, the Faster R-CNN visual detections are only provided for the static and not for the dynamic data.

ovad_dataset
│   DataLog.csv 				  # in _audio.zip & _video.zip
│
└───[environment]
│   └───left
│       └───[ID]
│       	│   camera_baseline_results.json  # _audio.zip
│       	│   out_multi.wav 		  # _audio.zip
│       	│   ueye_stereo_vid.mp4 	  # _video.zip
|	|   ...
│   └───none
│       └───[ID]
│       	│   camera_baseline_results.json
│       	│   out_multi.wav
│       	│   ueye_stereo_vid.mp4
|	|   ...
│   └───right
│       └───[ID]
│       	│   camera_baseline_results.json
│       	│   out_multi.wav
│       	│   ueye_stereo_vid.mp4
|	    ...
│   ...

The ID of each individual recording is enumarated in the format [X_XX_XXXX]. The first part indicates the recording class as 1: left, 2: none, 3: right. The second part indicates the location as stated in the table, and the last part is an enumeration.

The DataLog.csv holds information about each recording. The unique ID of the recording, the Environment described above, the recording label and the T0 frame for this particular recording, a snapshot is posted here.

A snapshot of the first elements of the datalog table

Structure ovad_dataset_samples.zip

The samples will be stored in the following format:

samples
│   SampleLog.csv   
│
└───left
    |   ID.wav
    |   ...
└───front
    |   ID.wav
    |   ...
└───none
    |   ID.wav
    |   ...
└───right
    |   ID.wav
    |   ...

The ID follows the same structure as above, but with class-id 0 for the additional front class.

Quick start guide

To run the following script you need the file ovad_dataset_audio.zip and optionally ovad_dataset_video.zip, if you wish to have a visual illustration of the scenes. Unpack the files in a folder [dataFolder] of your choice. For full functionality both zips should be unpacked at the same destination.

In order to reproduce the results of the paper, follow the following steps using the provided, extracted features and a pre-trained classifier:

git clone https://github.com/tudelft-iv/occluded_vehicle_acoustic_detection.git
cd occluded_vehicle_acoustic_detection

# Install python libraries (tested with python 3.6.12)
pip install -r requirements.txt

# reproduce Figure 6a), 7 and 8 (including video visualization)
python timeHorizonInference.py --input [dataFolder]/ovad_dataset --output [outputFolder] --class ./config/timeHorizonStaticClassifierExcludedTestset.obj --csv ./config/timeHorizonStaticTestset.csv --vis --store --axis-labels

# reproduce Table III (using pre-extracted features, does not require zip file)
python classificationExpts.py --run_cross_val --locs_list DAB DA DB

# reproduce Table IV (using pre-extracted features, does not require zip file)
python classficationExpts.py --run_gen --train_locs_list SB --test_locs_list SA
python classficationExpts.py --run_gen --train_locs_list SA --test_locs_list SB
python classficationExpts.py --run_gen --train_locs_list DB --test_locs_list DA
python classficationExpts.py --run_gen --train_locs_list DA --test_locs_list DB

Classification Experiments

The classification experiments carried out in the paper are implemented in the script classificationExpts.py. Before the classfication can be carried out on the data subsets, the SRP-PHAT features have to be extracted from the 1 second audio samples. To save time, a file containing the extracted features is provided at /config/extracted_features.csv. If the features have to be extracted again, then path to the 1 second audio samples should be provided at --input, along with the flag --extract_feats. In addition, --save_feats flag can be provided to save the extracted features at /config/extracted_features.csv.

To get results for the cross validation experiments (as in Table III), run the script as below. Specifying multiple arguments to the flag --locs_list will run the cross_validation on each location/environment separately.

python classificationExpts.py --run_cross_val --locs_list DAB DA DB

Another experiment that has been carried out in the paper is the generalization across locations and environments (Table IV). To get results here, run the script as:

python classficationExpts.py --run_gen --train_locs_list SB --test_locs_list SA

Additionally, a classifier can be trained and tested on required data subset or a combination of multiple data subsets. The specified subsets will be combined and stratified split of data will be carried on the given data to ensure that samples from the same recording are not present in both train and test split. Either individual locations SA1, SA2 ... or environment type SA to be combined can be specified for the flag --locs_list. The script can be run as follows:

python classifcationExpts.py --train_save_cls --locs_list SAB --save_cls

The trained classifier can be saved when the script is run with the options --run_gen or --train_save_cls by specifying the flag --save_cls. The result will be stored in a folder named saved_classifier alongside this script. If required, the results can also be stored at the required directory by specifying its path at the flag --output.

Time Horizon Inference

In order to run the experiment of the time horizon inference, run the script timeHorizonInference.py with appropriate flags. For help use the flag --help. Required arguments are --input [dataFolder]/ovad_dataset --output [outputFolder] --class [classifierPath]. The output path can be any of choice, the input path should point to the top level folder of the dataset.

An optional flag --csv [pathToFilterCsv] can and should be used to specify a test set. Without, the entire dataset will be processed. The csv file should at least include a column with ID's that are to be processed in the run. An example and the test set used is provided in /config/timeHorizonTestSet.csv. It is possible to use a mixed set of static and dynamic data, however comparing with the visual baseline would be meaningless, since there are no visual detections provided in the dynamic environments.

The classifier path should be the full path to the classifier object file generated or provided in the repository under /config/timeHorizonClassifierExcludedTestData.obj.

The additional flags --vis and --store can be used if an on the fly visualization shall be applied or if the overlay videos and plots shall be stored. The flag --axis-labels will produce labels on the figures as well. The results in form of data are always stored after a successful run of the script under /[outputFolder]/ResultTable.obj. In order to create the overlay videos with stereo sound the ffmpeg package should be installed on the machine.

If the flag --store is used it will produce two additional folders in [outputFolder]/Plots and [outputFolder]/VideoOverlays in which the videos and figures will be stored. The figures include the average confidences per class and timestep, the normalized absolute classification results per class and timestep and one half of the mean feature vectors per timestep. In addition to the overall performance, the figures are further separated per environment. Additionally, the total accuracy as defined in the paper is plotted against the visual baseline.

In order to redo the plotting after a successful run, the result table can be loaded in directly in a new DataHandler object by running:

import dataHandler as dh
rePlotter = dh.DataHandler(showViz=True)
rePlotter.loadResultTable([pathToResultTableObject])
rePlotter.postProcessing()

An example of the overlay is given below:

Overlay produced by the script during inference

Beamforming Visualization

Acoustic beamforming is used to create a 2D heatmap that is overlaid over the camera image to visualize the location of sailent sound sources around the Research Vehicle. This implementation uses the Acoular framework for beamforming. The code to generate the overlaid video is implemented in the beamforming.py script. To generate overlays:

python beamforming.py --input [inputFolder]

By default, the overlaid videos will be saved in the directory of the input video file. Optionally, by specifying --output [outputFolder] alongside the above command, one can save the beamforming result to the required directory.

Beamforming overlay of a right recording at location SA2:

Beamforming overlay of a right recording at location SA2

Authors

Yannick Schulz

Avinash Kini Mattar

Thomas M. Hehn

Julian F. P. Kooij

Owner
TU Delft Intelligent Vehicles
TU Delft Intelligent Vehicles
Most popular metrics used to evaluate object detection algorithms.

Most popular metrics used to evaluate object detection algorithms.

Rafael Padilla 4.4k Dec 25, 2022
LLVM-based compiler for LightGBM gradient-boosted trees. Speeds up prediction by ≥10x.

LLVM-based compiler for LightGBM gradient-boosted trees. Speeds up prediction by ≥10x.

Simon Boehm 183 Jan 02, 2023
A task Provided by A respective Artenal Ai and Ml based Company to complete it

A task Provided by A respective Alternal Ai and Ml based Company to complete it .

Parth Madan 1 Jan 25, 2022
Official repository for "Orthogonal Projection Loss" (ICCV'21)

Orthogonal Projection Loss (ICCV'21) Kanchana Ranasinghe, Muzammal Naseer, Munawar Hayat, Salman Khan, & Fahad Shahbaz Khan Paper Link | Project Page

Kanchana Ranasinghe 83 Dec 26, 2022
The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization

PRIMER The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization. PRIMER is a pre-trained model for mu

AI2 111 Dec 18, 2022
The NEOSSat is a dual-mission microsatellite designed to detect potentially hazardous Earth-orbit-crossing asteroids and track objects that reside in deep space

The NEOSSat is a dual-mission microsatellite designed to detect potentially hazardous Earth-orbit-crossing asteroids and track objects that reside in deep space

John Salib 2 Jan 30, 2022
It's like Shape Editor in Maya but works with skeletons (transforms).

Skeleposer What is Skeleposer? Briefly, it's like Shape Editor in Maya, but works with transforms and joints. It can be used to make complex facial ri

Alexander Zagoruyko 1 Nov 11, 2022
A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution.

Awesome Pretrained StyleGAN2 A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution. Note the readme is a

Justin 1.1k Dec 24, 2022
Pytorch Implementation of Residual Vision Transformers(ResViT)

ResViT Official Pytorch Implementation of Residual Vision Transformers(ResViT) which is described in the following paper: Onat Dalmaz and Mahmut Yurt

ICON Lab 41 Dec 08, 2022
Explanatory Learning: Beyond Empiricism in Neural Networks

Explanatory Learning This is the official repository for "Explanatory Learning: Beyond Empiricism in Neural Networks". Datasets Download the datasets

GLADIA Research Group 10 Dec 06, 2022
A Transformer-Based Siamese Network for Change Detection

ChangeFormer: A Transformer-Based Siamese Network for Change Detection (Under review at IGARSS-2022) Wele Gedara Chaminda Bandara, Vishal M. Patel Her

Wele Gedara Chaminda Bandara 214 Dec 29, 2022
Instant-nerf-pytorch - NeRF trained SUPER FAST in pytorch

instant-nerf-pytorch This is WORK IN PROGRESS, please feel free to contribute vi

94 Nov 22, 2022
Self-Supervised Generative Style Transfer for One-Shot Medical Image Segmentation

Self-Supervised Generative Style Transfer for One-Shot Medical Image Segmentation This repository contains the Pytorch implementation of the proposed

Devavrat Tomar 19 Nov 10, 2022
Plover-tapey-tape: an alternative to Plover’s built-in paper tape

plover-tapey-tape plover-tapey-tape is an alternative to Plover’s built-in paper

7 May 29, 2022
blind SQLIpy sebuah alat injeksi sql yang menggunakan waktu sql untuk mendapatkan sebuah server database.

blind SQLIpy Alat blind SQLIpy ini merupakan alat injeksi sql yang menggunakan metode time based blind sql injection metode tersebut membutuhkan waktu

Galih Anggoro Prasetya 4 Feb 24, 2022
Neural HMMs are all you need (for high-quality attention-free TTS)

Neural HMMs are all you need (for high-quality attention-free TTS) Shivam Mehta, Éva Székely, Jonas Beskow, and Gustav Eje Henter This is the official

Shivam Mehta 0 Oct 28, 2022
Breaking the Dilemma of Medical Image-to-image Translation

Breaking the Dilemma of Medical Image-to-image Translation Supervised Pix2Pix and unsupervised Cycle-consistency are two modes that dominate the field

Kid Liet 86 Dec 21, 2022
Repo for the paper "DiLBERT: Cheap Embeddings for Disease Related Medical NLP"

DiLBERT Repo for the paper "DiLBERT: Cheap Embeddings for Disease Related Medical NLP" Pretrained Model The pretrained model presented in the paper is

Kevin Roitero 2 Dec 15, 2022
Repository for the NeurIPS 2021 paper: "Exploiting Domain-Specific Features to Enhance Domain Generalization".

meta-Domain Specific-Domain Invariant (mDSDI) Source code implementation for the paper: Manh-Ha Bui, Toan Tran, Anh Tuan Tran, Dinh Phung. "Exploiting

VinAI Research 12 Nov 25, 2022
Sequence-tagging using deep learning

Classification using Deep Learning Requirements PyTorch version = 1.9.1+cu111 Python version = 3.8.10 PyTorch-Lightning version = 1.4.9 Huggingface

Vineet Kumar 2 Dec 20, 2022