OSLO: Open Source framework for Large-scale transformer Optimization

Related tags

Deep Learningoslo
Overview


O S L O

Open Source framework for Large-scale transformer Optimization

GitHub release Apache 2.0 Docs Issues



What's New:

What is OSLO about?

OSLO is a framework that provides various GPU based optimization features for large-scale modeling. As of 2021, the Hugging Face Transformers is being considered de facto standard. However, it does not best fit the purposes of large-scale modeling yet. This is where OSLO comes in. OSLO is designed to make it easier to train large models with the Transformers. For example, you can fine-tune GPTJ on the Hugging Face Model Hub without many extra efforts using OSLO. Currently, GPT2, GPTNeo, and GPTJ are supported, but we plan to support more soon.

Installation

OSLO can be easily installed using the pip package manager. All the dependencies such as torch, transformers, dacite, ninja and pybind11 should be installed automatically with the following command. Be careful that the 'core' in the PyPI project name.

pip install oslo-core

Some of features rely on the C++ language. So we provide an option, CPP_AVAILABLE, to decide whether or not you install them.

  • If the C++ is available:
CPP_AVAILABLE=1 pip install oslo-core
  • If the C++ is not available:
CPP_AVAILABLE=0 pip install oslo-core

Note that the default value of CPP_AVAILABLE is 0 in Windows and 1 in Linux.

Key Features

import deepspeed 
from oslo import GPTJForCausalLM

# 1. 3D Parallelism
model = GPTJForCausalLM.from_pretrained_with_parallel(
    "EleutherAI/gpt-j-6B", tensor_parallel_size=2, pipeline_parallel_size=2,
)

# 2. Kernel Fusion
model = model.fuse()

# 3. DeepSpeed Support
engines = deepspeed.initialize(
    model=model.gpu_modules(), model_parameters=model.gpu_paramters(), ...,
)

# 4. Data Processing
from oslo import (
    DatasetPreprocessor, 
    DatasetBlender, 
    DatasetForCausalLM, 
    ...    
)

OSLO offers the following features.

  • 3D Parallelism: The state-of-the-art technique for training a large-scale model with multiple GPUs.
  • Kernel Fusion: A GPU optimization method to increase training and inference speed.
  • DeepSpeed Support: We support DeepSpeed which provides ZeRO data parallelism.
  • Data Processing: Various utilities for efficient large-scale data processing.

See USAGE.md to learn how to use them.

Administrative Notes

Citing OSLO

If you find our work useful, please consider citing:

@misc{oslo,
  author       = {Ko, Hyunwoong and Kim, Soohwan and Park, Kyubyong},
  title        = {OSLO: Open Source framework for Large-scale transformer Optimization},
  howpublished = {\url{https://github.com/tunib-ai/oslo}},
  year         = {2021},
}

Licensing

The Code of the OSLO project is licensed under the terms of the Apache License 2.0.

Copyright 2021 TUNiB Inc. http://www.tunib.ai All Rights Reserved.

Acknowledgements

The OSLO project is built with GPU support from the AICA (Artificial Intelligence Industry Cluster Agency).

Comments
  • [WIP] Implement ZeRO Stage 3 (FSDP)

    [WIP] Implement ZeRO Stage 3 (FSDP)

    Title

    • Implement ZeRO Stage 3 (FullyShardedDataParallel)

    Description

    • [x] Add reduce_scatter_bucketer.py
      • [x] Add test_reduce_scatter_bucketer.py
    • [x] Add flatten_params_wrapper.py
      • [x] Add test_flatten_params_wrapper.py
    • [x] Add containers.py
      • [x] Add test_containers.py
    • [x] Add parallel.py
      • [x] Add test_parallel.py
    • [x] Add fsdp_optim_utils.py
    • [x] Update fsdp.py
    • [x] Add auto_wrap.py
      • [x] Add test_wrap.py
    opened by jinok2im 9
  • FusedAdam & CPUAdam

    FusedAdam & CPUAdam

    Title

    -FusedAdam & CPUAdam

    Description

    • Implement FusedAdam & CPUAdam

    Tasks

    • [x] Implement FusedAdam
    • [x] implement CPUAdam
    • [x] Test FusedAdam
    • [x] Test CPUAdam
    • [x] Test FusedSclaeMaskSoftmax (Name changed)
    opened by cozytk 6
  • [WIP] Add data processing modules referring to the lassl

    [WIP] Add data processing modules referring to the lassl

    Title

    • add data processing modules referring to the lassl

    Description

    • brought data processing functions that fit gpt2 with reference to lassl

    Linked Issues

    • None
    opened by gimmaru 6
  • Implementation of Sequential Parallelism

    Implementation of Sequential Parallelism

    SP with DP implementation

    • Implemented SP wrapper with DP

    Description

    • SequenceDataParallel works like native torch DDP with SP
    • you can find details in the file oslo/tests/torch/nn/parallal/data_parallel/test_sp.py
    opened by ohwi 5
  • Update data collators and Add models

    Update data collators and Add models

    Title

    • Update data collators and Add models

    Description

    • Updated data collators to utilize sequence parallel in Oslo trainer
    • Add models by referring to the transformers library
    opened by gimmaru 3
  • Implement Expert Parallel and Test for Initialization and Forward Pass

    Implement Expert Parallel and Test for Initialization and Forward Pass

    Title

    • Implement Expert Parallel and Test for Initialization and Forward Pass

    Description

    • Implement Wrapper, Modules and Features for Expert Parallel
    • Implement mapping_utils._ParallelMappingForHuggingFace as super class of _TensorParallelMappingForHuggingFace and _ExpertParallelMappingForHuggingFace
    • Test initialization and forward pass for expert parallel
    opened by scsc0511 3
  • Integrate Sequence Parallelism branches

    Integrate Sequence Parallelism branches

    Title

    • Sequence parallelism (feat. @reniew, @ohwi, @l-yohai)

    Description

    • This PR is Integration of SP current version. But there is something wrong.
    • We will fix the bugs for the coming week and write test modules according to the SP design.
    • It did not include the contents of the branch that worked for the test.
    opened by l-yohai 3
  • implement tp-3d layers, wrapper, test codes and refactor all tp test codes and layers

    implement tp-3d layers, wrapper, test codes and refactor all tp test codes and layers

    • implement tp-3d wrapper
    • rank transpose problem (tensor_3d_input_rank <-> tensor_3d_output_rank) by implementing ranking transpose function.
    • revise tp-3d layers for huggingface compatibility
    • implement tp-3d test codes
    • refactor all tp test codes
    • unify format across all tensor parallel modules.
    opened by bzantium 2
  • Refactoring MultiheadAttention with todo anchors

    Refactoring MultiheadAttention with todo anchors

    Title

    • Refactoring MultiheadAttention with todo anchors

    Description

    • Refactoring oslo/torch/nn/modules/functional/multi_head_attention_forward.py.
    • Remove unnecessary or unintended code and clean up annotations.
    • Unify return format and the variable name with native torch.

    Additionally, I need to test attention_mask. However, it seems that it can proceed with this part after FusedScaleMaskSoftmax is integrated.

    cc. @hyunwoongko @ohwi

    opened by l-yohai 2
  • Add tp-1d layers testing

    Add tp-1d layers testing

    • Add testing for tp-1d layers: col_linear, row_linear, vocab_embedding_1d
    • modify number to integer variable like summa_dim, world_size cc: @hyunwoongko
    opened by bzantium 2
  • [WIP] add test code of sp training

    [WIP] add test code of sp training

    Title

    • SP Model Test Code

    Description

    Writing a test code to verify that the gradient and loss values of the model are the same when the sequence parallelism is applied.

    • WIP - merging @ohwi 's test code comparing SP of ColossalAI and simple learning model.
    opened by l-yohai 2
Releases(v2.0.2)
  • v2.0.2(Aug 25, 2022)

  • v2.0.1(Feb 20, 2022)

  • v2.0.0(Feb 14, 2022)

    Official release of OSLO 2.0.0 πŸŽ‰πŸŽ‰

    This version of OSLO provides the following features:

    • Tensor model parallelism
    • Efficient activation checkpointing
    • Kernel fusion

    We plan to add the pipeline model parallelism and the ZeRO optimization in the next versions.


    New feature: Kernel Fusion

    {
      "kernel_fusion": {
        "enable": "bool",
        "memory_efficient_fusion": "bool",
        "custom_cuda_kernels": "list"
      }
    }
    

    For more information, please check the kernel fusion tutorial

    Source code(tar.gz)
    Source code(zip)
  • v2.0.0a2(Feb 2, 2022)

  • v2.0.0a1(Feb 2, 2022)

    Add activation checkpointing

    You can use efficient activation checkpointing using OSLO with the following configuration.

    model = oslo.initialize(
        model,
        config={
            "model_parallelism": {
                "enable": True,
                "tensor_parallel_size": YOUR_TENSOR_PARALLEL_SIZE,
            },
            "activation_checkpointing": {
                "enable": True,
                "cpu_checkpointing": True,
                "partitioned_checkpointing": True,
                "contiguous_checkpointing": True,
            },
        },
    )
    

    Tutorial: https://tunib-ai.github.io/oslo/TUTORIALS/activation_checkpointing.html

    Source code(tar.gz)
    Source code(zip)
  • v2.0.0a0(Jan 30, 2022)

    New API

    • We paid homage to DeepSpeed. Now it's easier and simpler to use.
    import oslo
    
    model = oslo.initialize(model, config="oslo-config.json")
    

    Add new models

    • Albert
    • Bert
    • Bart
    • T5
    • GPT2
    • GPTNeo
    • GPTJ
    • Electra
    • Roberta

    Add document

    • https://tunib-ai.github.io/oslo

    Remove old pipeline parallelism, kernel fusion code

    • We'll refurbish them using the latest methods
      • Kernel fusion: AOTAutograd
      • Pipeline parallelism: Sagemaker PP
    Source code(tar.gz)
    Source code(zip)
  • v.1.1.2(Jan 15, 2022)

    Updates

    [#7] Selective Kernel Fusion [#9] Fix argument bug

    New Feature: Selective Kernel Fusion

    Since version 1.1.2, you can fuse only partial kernels, not all kernels. Currently, only Attention class and MLP class are supported.

    from oslo import GPT2MLP, GPT2Attention
    
    # MLP only fusion
    model.fuse([GPT2MLP])
    
    # Attention only fusion
    model.fuse([GPT2Attention])
    
    # MLP + Attention fusion
    model.fuse([GPT2MLP, GPT2Attention])
    
    Source code(tar.gz)
    Source code(zip)
  • v1.1(Dec 29, 2021)

    [#3] Add deployment launcher of Parallelformers into OSLO.

    from oslo import GPTNeoForCausalLM
    
    model = GPTNeoForCausalLM.from_pretrained_with_parallel(
        "EleutherAI/gpt-neo-2.7B",
        tensor_parallel_size=2,
        pipeline_parallel_size=2,
        deployment=True  # <-- new feature !
    )
    

    You can easily use deployment launcher by deployment=True. Please refer to USAGE.md for more details.

    Source code(tar.gz)
    Source code(zip)
  • v1.0.1(Dec 22, 2021)

  • v1.0(Dec 21, 2021)


    O S L O

    Open Source framework for Large-scale transformer Optimization

    GitHub release Apache 2.0 Docs Issues



    What's New:

    What is OSLO about?

    OSLO is a framework that provides various GPU based optimization features for large-scale modeling. As of 2021, the Hugging Face Transformers is being considered de facto standard. However, it does not best fit the purposes of large-scale modeling yet. This is where OSLO comes in. OSLO is designed to make it easier to train large models with the Transformers. For example, you can fine-tune GPTJ on the Hugging Face Model Hub without many extra efforts using OSLO. Currently, GPT2, GPTNeo, and GPTJ are supported, but we plan to support more soon.

    Installation

    OSLO can be easily installed using the pip package manager. All the dependencies such as torch, transformers, dacite, ninja and pybind11 should be installed automatically with the following command. Be careful that the 'core' in the PyPI project name.

    pip install oslo-core
    

    Some of features rely on the C++ language. So we provide an option, CPP_AVAILABLE, to decide whether or not you install them.

    • If the C++ is available:
    CPP_AVAILABLE=1 pip install oslo-core
    
    • If the C++ is not available:
    CPP_AVAILABLE=0 pip install oslo-core
    

    Note that the default value of CPP_AVAILABLE is 0 in Windows and 1 in Linux.

    Key Features

    import deepspeed 
    from oslo import GPTJForCausalLM
    
    # 1. 3D Parallelism
    model = GPTJForCausalLM.from_pretrained_with_parallel(
        "EleutherAI/gpt-j-6B", tensor_parallel_size=2, pipeline_parallel_size=2,
    )
    
    # 2. Kernel Fusion
    model = model.fuse()
    
    # 3. DeepSpeed Support
    engines = deepspeed.initialize(
        model=model.gpu_modules(), model_parameters=model.gpu_paramters(), ...,
    )
    
    # 4. Data Processing
    from oslo import (
        DatasetPreprocessor, 
        DatasetBlender, 
        DatasetForCausalLM, 
        ...    
    )
    

    OSLO offers the following features.

    • 3D Parallelism: The state-of-the-art technique for training a large-scale model with multiple GPUs.
    • Kernel Fusion: A GPU optimization method to increase training and inference speed.
    • DeepSpeed Support: We support DeepSpeed which provides ZeRO data parallelism.
    • Data Processing: Various utilities for efficient large-scale data processing.

    See USAGE.md to learn how to use them.

    Administrative Notes

    Citing OSLO

    If you find our work useful, please consider citing:

    @misc{oslo,
      author       = {Ko, Hyunwoong and Kim, Soohwan and Park, Kyubyong},
      title        = {OSLO: Open Source framework for Large-scale transformer Optimization},
      howpublished = {\url{https://github.com/tunib-ai/oslo}},
      year         = {2021},
    }
    

    Licensing

    The Code of the OSLO project is licensed under the terms of the Apache License 2.0.

    Copyright 2021 TUNiB Inc. http://www.tunib.ai All Rights Reserved.

    Acknowledgements

    The OSLO project is built with GPU support from the AICA (Artificial Intelligence Industry Cluster Agency).

    Source code(tar.gz)
    Source code(zip)
Owner
TUNiB
TUNiB Inc.
TUNiB
VOneNet: CNNs with a Primary Visual Cortex Front-End

VOneNet: CNNs with a Primary Visual Cortex Front-End A family of biologically-inspired Convolutional Neural Networks (CNNs). VOneNets have the followi

The DiCarlo Lab at MIT 99 Dec 22, 2022
[ICSE2020] MemLock: Memory Usage Guided Fuzzing

MemLock: Memory Usage Guided Fuzzing This repository provides the tool and the evaluation subjects for the paper "MemLock: Memory Usage Guided Fuzzing

Cheng Wen 54 Jan 07, 2023
This repository contains the code for the paper "PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization"

PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization News: [2020/05/04] Added EGL rendering option for training data g

Shunsuke Saito 1.5k Jan 03, 2023
Saliency - Framework-agnostic implementation for state-of-the-art saliency methods (XRAI, BlurIG, SmoothGrad, and more).

Saliency Methods πŸ”΄ Now framework-agnostic! (Example core notebook) πŸ”΄ πŸ”— For further explanation of the methods and more examples of the resulting ma

PAIR code 849 Dec 27, 2022
Code for the paper "Functional Regularization for Reinforcement Learning via Learned Fourier Features"

Reinforcement Learning with Learned Fourier Features State-space Soft Actor-Critic Experiments Move to the state-SAC-LFF repository. cd state-SAC-LFF

Alex Li 10 Nov 11, 2022
Pytorch implementation of four neural network based domain adaptation techniques: DeepCORAL, DDC, CDAN and CDAN+E. Evaluated on benchmark dataset Office31.

Deep-Unsupervised-Domain-Adaptation Pytorch implementation of four neural network based domain adaptation techniques: DeepCORAL, DDC, CDAN and CDAN+E.

Alan Grijalva 49 Dec 20, 2022
MOOSE (Multi-organ objective segmentation) a data-centric AI solution that generates multilabel organ segmentations to facilitate systemic TB whole-person research

MOOSE (Multi-organ objective segmentation) a data-centric AI solution that generates multilabel organ segmentations to facilitate systemic TB whole-person research.The pipeline is based on nn-UNet an

QIMP team 30 Jan 01, 2023
Code accompanying the paper on "An Empirical Investigation of Domain Generalization with Empirical Risk Minimizers" published at NeurIPS, 2021

Code for "An Empirical Investigation of Domian Generalization with Empirical Risk Minimizers" (NeurIPS 2021) Motivation and Introduction Domain Genera

Meta Research 15 Dec 27, 2022
This repository contains the code for the paper 'PARM: Paragraph Aggregation Retrieval Model for Dense Document-to-Document Retrieval' published at ECIR'22.

Paragraph Aggregation Retrieval Model (PARM) for Dense Document-to-Document Retrieval This repository contains the code for the paper PARM: A Paragrap

Sophia Althammer 33 Aug 26, 2022
On the adaptation of recurrent neural networks for system identification

On the adaptation of recurrent neural networks for system identification This repository contains the Python code to reproduce the results of the pape

Marco Forgione 3 Jan 13, 2022
pytorch implementation of dftd2 & dftd3

torch-dftd pytorch implementation of dftd2 [1] & dftd3 [2, 3] Install # Install from pypi pip install torch-dftd # Install from source (for developer

33 Nov 28, 2022
Code for a seq2seq architecture with Bahdanau attention designed to map stereotactic EEG data from human brains to spectrograms, using the PyTorch Lightning.

stereoEEG2speech We provide code for a seq2seq architecture with Bahdanau attention designed to map stereotactic EEG data from human brains to spectro

15 Nov 11, 2022
Cobalt Strike teamserver detection.

Cobalt-Strike-det Cobalt Strike teamserver detection. usage: cobaltstrike_verify.py [-l TARGETS] [-t THREADS] optional arguments: -h, --help show this

TimWhite 17 Sep 27, 2022
3D dataset of humans Manipulating Objects in-the-Wild (MOW)

MOW dataset [Website] This repository maintains our 3D dataset of humans Manipulating Objects in-the-Wild (MOW). The dataset contains 512 images in th

Zhe Cao 28 Nov 06, 2022
Combining Reinforcement Learning and Constraint Programming for Combinatorial Optimization

Hybrid solving process for combinatorial optimization problems Combinatorial optimization has found applications in numerous fields, from aerospace to

117 Dec 13, 2022
Minimal PyTorch implementation of YOLOv3

A minimal PyTorch implementation of YOLOv3, with support for training, inference and evaluation.

Erik Linder-NorΓ©n 6.9k Dec 29, 2022
Linescanning - Package for (pre)processing of anatomical and (linescanning) fMRI data

line scanning repository This repository contains all of the tools used during the acquisition and postprocessing of line scanning data at the Spinoza

Jurjen Heij 4 Sep 14, 2022
Code for CVPR2021 "Visualizing Adapted Knowledge in Domain Transfer". Visualization for domain adaptation. #explainable-ai

Visualizing Adapted Knowledge in Domain Transfer @inproceedings{hou2021visualizing, title={Visualizing Adapted Knowledge in Domain Transfer}, auth

Yunzhong Hou 80 Dec 25, 2022
DeepVoxels is an object-specific, persistent 3D feature embedding.

DeepVoxels is an object-specific, persistent 3D feature embedding. It is found by globally optimizing over all available 2D observations of

Vincent Sitzmann 196 Dec 25, 2022
Multi-angle c(q)uestion answering

Macaw Introduction Macaw (Multi-angle c(q)uestion answering) is a ready-to-use model capable of general question answering, showing robustness outside

AI2 430 Jan 04, 2023