Texture mapping with variational auto-encoders

Overview

vae-textures

This is an experiment with using variational autoencoders (VAEs) to perform mesh parameterization. This was also my first project using JAX and Flax, and I found them both quite intuitive and easy to use.

To get straight to the results, check out the Results section. The Background section describes the goals of this project in a bit more detail.

Background

In geometry processing, mesh parameterization allows high-resolution details of a 3D object, such as color and material variations, to be stored in a highly-optimized 2D image format. The strategy is to map each vertex of the 3D model's mesh to a unique 2D location in the plane, with the constraint that nearby points in 3D are also nearby in 2D. In general, we want this mapping to distort the geometry of the surface as little as possible, so for example large features on the 3D surface get a lot of pixels in the 2D image.

This might ring a bell to those familiar with machine learning. In ML, mapping a higher-dimensional space to a lower-dimensional space is called "embedding" and is often performed to aid in visualization or to remove extraneous information. VAEs are one technique in ML for mapping a high-dimensional space to a well-behaved latent space, and have the desirable property that probability densities are (approximately) preserved between the two spaces.

Given the above observations, here is how we can use VAEs for mesh parameterization:

  1. For a given 3D model, create a "surface dataset" with random points on the surface and their respective normals.
  2. Train a VAE to generate points on the surface using a 2D Gaussian latent space.
  3. Use the gaussian CDF to convert the above latents to the uniform distribution, so that "probability preservation" becomes "area preservation".
  4. Apply the 3D -> 2D mapping from the VAE encoder + gaussian CDF to map the vertices of the original mesh to the unit square.
  5. Render the resulting model with some test 2D texture image acting as the unit square.

The above process sounds pretty solid, but there are some quirks to getting it to work. Coming into this project, I predicted two possible reasons it would fail. It turns out that number 2 isn't that big of an issue (an extra orthogonality loss helps a lot), and there was a third issue I didn't think of (described in the Results section).

  1. Some triangles will be messed up because of cuts/seams. In particular, the VAE will have to "cut up" the surface to place it into the latent space, and we won't know exactly where these cuts are when mapping texture coordinates to triangle vertices. As a result, a few triangles must have points which are very far away in latent space.
  2. It will be difficult to force the mapping to be conformal. The VAE objective will mostly attempt to preserve areas (i.e. density), and ideally we care about conformality as well.

Results

This was my first time using JAX. Nevertheless, I was able to get interesting results right out of the gate. I ran most of my experiments on a torus 3D model, but I have since verified that it works for more complex models as well.

Initially, I trained VAEs with a Gaussian decoder loss. I also played around with an orthogonality bonus based on the eigenvalues of the Jacobian of the encoder. This resulted in texture mappings like this one:

Torus with orthogonality bonus and Gaussian loss

The above picture looks like a clean mapping, but it isn't actually bijective. To see why, let's sample from this VAE. If everything works as expected, we should get points on the surface of the torus. For this "sampling", I'll use the mean prediction from the decoder (even though its output is a Gaussian distribution) since we really just want a deterministic mapping:

A flat disk with a hole in the middle

It might be hard to tell from a single rendering, but this is just a flat disk with a low-density hole in the middle. In particular, the VAE isn't encoding the z axis at all, but rather just the x and y axes. The resulting texture map looks smooth, but every point in the texture is reused on each side of the torus, so the mapping is not bijective.

I discovered that this caused by the Gaussian likelihood loss on the decoder. It is possible for the model to reduce this loss arbitrarily by shrinking the standard deviations of the x and y axes, so there is little incentive to actually capture every axis accurately.

To achieve better results, we can drop the Gaussian likelihood loss and instead use pure MSE for the decoder. This isn't very well-principled, and we now have to select a reasonable coefficient for the KL term of the VAE to balance the reconstruction accuracy with the quality of the latent distribution. I found good hyperparameters for the torus, but these will likely require tuning for other models.

With the better reconstruction loss function, sampling the VAE gives the expected point cloud:

The surface of a torus, point cloud

The mappings we get don't necessarily seem angle-preserving, though:

A tiled grid mapped onto a torus

To preserve angles, we can add an orthogonality bonus to the loss. When we try to make the map preserve angles, we might make it less area preserving, as can be seen here:

A tiled grid mapped onto a torus which attempts to preserve angles

Also note from the last two images that there are seams along which the texture looks totally messed up. This is because the surface cannot be flattened to a plane without some cuts, along which the VAE encoder has to "jump" from one point on the 2D plane to another. This was one of my predicted shortcomings of the method.

Running

First, install the package with

pip install -e .

Training

My initial VAE experiments were run like so, via scripts/train_vae.py:

python scripts/train_vae.py --ortho-coeff 0.002 --num-iters 20000 models/torus.stl

This will save a model checkpoint to vae.pkl after 20000 iterations, which only takes a minute or two on a laptop CPU.

The above will train a VAE with Gaussian reconstruction loss, which may not learn a good bijective map (as shown above). To instead use the MSE decoder loss, try:

python scripts/train_vae.py --recon-loss-fn mse --kl-coeff 0.001 --batch-size 1024 --num-iters 20000 models/torus.stl

I also found a better orthogonality loss function. To get reasonable mappings that attempt to preserve angles, add --ortho-coeff 0.01 --ortho-loss-fn rel.

Using the VAE

Once you have trained a VAE, you can export a 3D model with the resulting texture mapping like so:

python scripts/map_vae.py models/torus.stl outputs/mapped_output.obj

Note that the resulting .obj file references a material.mtl file which should be in the same directory. I already include such a file with a checkerboard texture in outputs/material.mtl.

You can also sample a point cloud from the VAE using point_cloud_gen.py:

python scripts/point_cloud_gen.py outputs/point_cloud.obj

Finally, you can produce a texture image such that the pixel at point (x, y) is an RGB-encoded, normalized (x, y, z) coordinate from decoder(x, y).

python scripts/inv_map_vae.py models/torus.stl outputs/rgb_texture.png
Owner
Alex Nichol
Web developer, math geek, and AI enthusiast.
Alex Nichol
Code for "Learning Skeletal Graph Neural Networks for Hard 3D Pose Estimation" ICCV'21

Skeletal-GNN Code for "Learning Skeletal Graph Neural Networks for Hard 3D Pose Estimation" ICCV'21 Various deep learning techniques have been propose

37 Oct 23, 2022
BigbrotherBENL - Face recognition on the Big Brother episodes in Belgium and the Netherlands.

BigbrotherBENL - Face recognition on the Big Brother episodes in Belgium and the Netherlands. Keeping statistics of whom are most visible and recognisable in the series and wether or not it has an im

Frederik 2 Jan 04, 2022
Protect against subdomain takeover

domain-protect scans Amazon Route53 across an AWS Organization for domain records vulnerable to takeover deploy to security audit account scan your en

OVO Technology 0 Nov 17, 2022
Detector for Log4Shell exploitation attempts

log4shell-detector Detector for Log4Shell exploitation attempts Idea The problem with the log4j CVE-2021-44228 exploitation is that the string can be

Florian Roth 729 Dec 25, 2022
Extracts essential Mediapipe face landmarks and arranges them in a sequenced order.

simplified_mediapipe_face_landmarks Extracts essential Mediapipe face landmarks and arranges them in a sequenced order. The default 478 Mediapipe face

Irfan 13 Oct 04, 2022
Surrogate-Assisted Genetic Algorithm for Wrapper Feature Selection

SAGA Surrogate-Assisted Genetic Algorithm for Wrapper Feature Selection Please refer to the Jupyter notebook (Example.ipynb) for an example of using t

9 Dec 28, 2022
Kohei's 5th place solution for xview3 challenge

xview3-kohei-solution Usage This repository assumes that the given data set is stored in the following locations: $ ls data/input/xview3/*.csv data/in

Kohei Ozaki 2 Jan 17, 2022
This is a tensorflow-based rotation detection benchmark, also called AlphaRotate.

AlphaRotate: A Rotation Detection Benchmark using TensorFlow Abstract AlphaRotate is maintained by Xue Yang with Shanghai Jiao Tong University supervi

yangxue 972 Jan 05, 2023
Official repository for "On Generating Transferable Targeted Perturbations" (ICCV 2021)

On Generating Transferable Targeted Perturbations (ICCV'21) Muzammal Naseer, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Fatih Porikli Paper:

Muzammal Naseer 46 Nov 17, 2022
PyTorch implementation of Graph Convolutional Networks in Feature Space for Image Deblurring and Super-resolution, IJCNN 2021.

GCResNet PyTorch implementation of Graph Convolutional Networks in Feature Space for Image Deblurring and Super-resolution, IJCNN 2021. The code will

11 May 19, 2022
FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection

FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection arXi

59 Nov 29, 2022
A trashy useless Latin programming language written in python.

Codigum! The first programming langage in latin! (please keep your eyes closed when if you read the source code) It is pretty useless though. Document

Bic 2 Oct 25, 2021
Implementation of Hierarchical Transformer Memory (HTM) for Pytorch

Hierarchical Transformer Memory (HTM) - Pytorch Implementation of Hierarchical Transformer Memory (HTM) for Pytorch. This Deepmind paper proposes a si

Phil Wang 63 Dec 29, 2022
Unofficial PyTorch implementation of SimCLR by Google Brain

Unofficial PyTorch implementation of SimCLR by Google Brain

Rishabh Anand 2 Oct 13, 2021
Implementation of Lie Transformer, Equivariant Self-Attention, in Pytorch

Lie Transformer - Pytorch (wip) Implementation of Lie Transformer, Equivariant Self-Attention, in Pytorch. Only the SE3 version will be present in thi

Phil Wang 78 Oct 26, 2022
PyTorch implementation of MoCo: Momentum Contrast for Unsupervised Visual Representation Learning

MoCo: Momentum Contrast for Unsupervised Visual Representation Learning This is a PyTorch implementation of the MoCo paper: @Article{he2019moco, aut

Meta Research 3.7k Jan 02, 2023
Pull sensitive data from users on windows including discord tokens and chrome data.

⭐ For a 🍪 Pegasus Pull sensitive data from users on windows including discord tokens and chrome data. Features 🟩 Discord tokens 🟩 Geolocation data

Addi 44 Dec 31, 2022
Kroomsa: A search engine for the curious

Kroomsa A search engine for the curious. It is a search algorithm designed to en

Wingify 7 Jun 20, 2022
Learned Initializations for Optimizing Coordinate-Based Neural Representations

Learned Initializations for Optimizing Coordinate-Based Neural Representations Project Page | Paper Matthew Tancik*1, Ben Mildenhall*1, Terrance Wang1

Matthew Tancik 127 Jan 03, 2023
An open-source, low-cost, image-based weed detection device for fallow scenarios.

Welcome to the OpenWeedLocator (OWL) project, an opensource hardware and software green-on-brown weed detector that uses entirely off-the-shelf compon

Guy Coleman 145 Jan 05, 2023