Repo for flood prediction using LSTMs and HAND

Overview

Abstract

Every year, floods cause billions of dollars’ worth of damages to life, crops, and property. With a proper early flood warning system in place, decision-makers can take the necessary steps to prevent or at least mitigate the damage caused by floods. Although various flood prediction models exist, a majority of them fail to be fast, reliable, and detailed simultaneously. Our proposed system presents a novel hybrid flood prediction model using Long Short Term Memory(LSTM) for multivariate time series forecasting of water depth based on meteorological conditions and Height Above Nearest Drainage(HAND) to predict river stage in real-time and map the inundated areas for the corresponding water depth using enhanced HAND. Unlike traditional flood forecasting models, this hybrid approach is resource efficient and easy to implement making it highly practicable for real-time flood inundation mapping.

Methodology

The proposed system prioritizes quick development and real-time predictions without compromising on the accuracy. A range of factors affect the occurrences of riverine floods. However, climatological conditions are the major driving force behind them. Factors such as land use/land change and deforestation, although important, only affect flooding in the watershed over a long period of time. Hence, the proposed system used only meteorological conditions and DEM rasters for predicting floods over the next few days.

The relation between weather conditions and flood inundation is simplified by breaking the system into two modules. The first module being estimation of river stage height and the second one being flood inundation mapping. The system uses LSTMs, a data-driven empirical approach, to model the dependence of stage height on meteorological data and HAND, a simplified conceptual approach, to generate flood inundation maps based on the terrain of the watershed and the river stage height predicted by the first module.

Modules :

  1. Inundation Mapping - HAND algorithm to map inundated areas for a given stage height(as proposed in this paper).
  2. River Stage Estimation - Recurring neural networks (LSTMs) to predict the maximum stage height based on weather conditions of the last 3 days.
  3. Deforestation Analysis - Land use classification to identify the changing features of the area over time and identify the areas affected by deforestation.

Datasets

The proposed system uses different data for the three modules. Each of these are collected from different sources and processed separately. The module-wise requirements of data are as follows :

  1. Inundation Mapping:
    1. Digital Elevation Maps from United States Geological Survey
  2. River Stage Estimation:
    1. Meteorological data from National Climatic Data Center
    2. River stage height data from United States Army Corps of Engineers’ river gage data.
  3. Deforestation Analysis:
    1. Satellite images - Landsat 8, Landsat 5 from USGS Earth Explorer

Results

Stage Height Estimation

We tested our proposed system for Cedar Rapids, Iowa. Our experiments showed that features such as vegetation and soil type have little effect on short term flooding and can be disregarded for the prediction module. Testing multiple models showed that single output LSTM models perform better than single shot models. These models are stable upto lead times of 4 days with a Nash-Sutcliffe Efficiency greater than 0.5.

Flood Mapping

Each pixel of the inundation map raster is compared with a reference map created by ground-truthing to identify how many points were incorrectly classified as not flooded. The red areas in the image depict false negatives generated by the proposed system.

A repository built on the Flow software package to explore cyber-security attacks on intelligent transportation systems.

A repository built on the Flow software package to explore cyber-security attacks on intelligent transportation systems.

George Gunter 4 Nov 14, 2022
Cosine Annealing With Warmup

CosineAnnealingWithWarmup Formulation The learning rate is annealed using a cosine schedule over the course of learning of n_total total steps with an

zhuyun 4 Apr 18, 2022
Improving adversarial robustness by a coupling rejection strategy

Adversarial Training with Rectified Rejection The code for the paper Adversarial Training with Rectified Rejection. Environment settings and libraries

Tianyu Pang 29 Jan 06, 2023
EdMIPS: Rethinking Differentiable Search for Mixed-Precision Neural Networks

EdMIPS is an efficient algorithm to search the optimal mixed-precision neural network directly without proxy task on ImageNet given computation budgets. It can be applied to many popular network arch

Zhaowei Cai 47 Dec 30, 2022
An experiment on the performance of homemade Q-learning AIs in Agar.io depending on their state representation and available actions

Agar.io_Q-Learning_AI An experiment on the performance of homemade Q-learning AIs in Agar.io depending on their state representation and available act

1 Jun 09, 2022
YOLOX is a high-performance anchor-free YOLO, exceeding yolov3~v5 with ONNX, TensorRT, ncnn, and OpenVINO supported.

Introduction YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and ind

7.7k Jan 03, 2023
Running AlphaFold2 (from ColabFold) in Azure Machine Learning

Running AlphaFold2 (from ColabFold) in Azure Machine Learning Colby T. Ford, Ph.D. Companion repository for Medium Post: How to predict many protein s

Colby T. Ford 3 Feb 18, 2022
Finetune alexnet with tensorflow - Code for finetuning AlexNet in TensorFlow >= 1.2rc0

Finetune AlexNet with Tensorflow Update 15.06.2016 I revised the entire code base to work with the new input pipeline coming with TensorFlow = versio

Frederik Kratzert 766 Jan 04, 2023
Code I use to automatically update my videos' metadata on YouTube

mCodingYouTube This repository contains the code I use to automatically update my videos' metadata on YouTube, including: titles, descriptions, tags,

James Murphy 19 Oct 07, 2022
AdamW optimizer for bfloat16 models in pytorch.

Image source AdamW optimizer for bfloat16 models in pytorch. Bfloat16 is currently an optimal tradeoff between range and relative error for deep netwo

Alex Rogozhnikov 8 Nov 20, 2022
High performance Cross-platform Inference-engine, you could run Anakin on x86-cpu,arm, nv-gpu, amd-gpu,bitmain and cambricon devices.

Anakin2.0 Welcome to the Anakin GitHub. Anakin is a cross-platform, high-performance inference engine, which is originally developed by Baidu engineer

514 Dec 28, 2022
(CVPR 2021) Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds

BRNet Introduction This is a release of the code of our paper Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds,

86 Oct 05, 2022
A Web API for automatic background removal using Deep Learning. App is made using Flask and deployed on Heroku.

Automatic_Background_Remover A Web API for automatic background removal using Deep Learning. App is made using Flask and deployed on Heroku. 👉 https:

Gaurav 16 Oct 29, 2022
Meshed-Memory Transformer for Image Captioning. CVPR 2020

M²: Meshed-Memory Transformer This repository contains the reference code for the paper Meshed-Memory Transformer for Image Captioning (CVPR 2020). Pl

AImageLab 422 Dec 28, 2022
TransZero++: Cross Attribute-guided Transformer for Zero-Shot Learning

TransZero++ This repository contains the testing code for the paper "TransZero++: Cross Attribute-guided Transformer for Zero-Shot Learning" submitted

Shiming Chen 6 Aug 16, 2022
This is a collection of all challenges in HKCERT CTF 2021

香港網絡保安新生代奪旗挑戰賽 2021 (HKCERT CTF 2021) This is a collection of all challenges (and writeups) in HKCERT CTF 2021 Challenges ID Chinese name Name Score S

10 Jan 27, 2022
Implementation of the method described in the Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.

Speech Resynthesis from Discrete Disentangled Self-Supervised Representations Implementation of the method described in the Speech Resynthesis from Di

4 Mar 11, 2022
Pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021).

Pytorch code for SS-Net This is a pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021). Environment Code is tested

Sun Ran 1 May 18, 2022
CTRL-C: Camera calibration TRansformer with Line-Classification

CTRL-C: Camera calibration TRansformer with Line-Classification This repository contains the official code and pretrained models for CTRL-C (Camera ca

57 Nov 14, 2022
The PyTorch implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision The PyTorch implementation of DiscoBox: Weakly Supe

Shiyi Lan 1 Oct 23, 2021