Direct LiDAR Odometry: Fast Localization with Dense Point Clouds

Overview

Direct LiDAR Odometry: Fast Localization with Dense Point Clouds

DLO is a lightweight and computationally-efficient frontend LiDAR odometry solution with consistent and accurate localization. It features several algorithmic innovations that increase speed, accuracy, and robustness of pose estimation in perceptually-challenging environments and has been extensively tested on aerial and legged robots.

This work was part of NASA JPL Team CoSTAR's research and development efforts for the DARPA Subterranean Challenge, in which DLO was the primary state estimation component for our fleet of autonomous aerial vehicles.


drawing drawing

drawing

Instructions

DLO requires an input point cloud of type sensor_msgs::PointCloud2 with an optional IMU input of type sensor_msgs::Imu. Note that although IMU data is not required, it can be used for initial gravity alignment and will help with point cloud registration.

Dependencies

Our system has been tested extensively on both Ubuntu 18.04 Bionic with ROS Melodic and Ubuntu 20.04 Focal with ROS Noetic, although other versions may work. The following configuration with required dependencies has been verified to be compatible:

  • Ubuntu 18.04 or 20.04
  • ROS Melodic or Noetic (roscpp, std_msgs, sensor_msgs, geometry_msgs, pcl_ros)
  • C++ 14
  • CMake >= 3.16.3
  • OpenMP >= 4.5
  • Point Cloud Library >= 1.10.0
  • Eigen >= 3.3.7

Installing the binaries from Aptitude should work though:

sudo apt install libomp-dev libpcl-dev libeigen3-dev 

Compiling

Create a catkin workspace, clone the direct_lidar_odometry repository into the src folder, and compile via the catkin_tools package (or catkin_make if preferred):

mkdir ws && cd ws && mkdir src && catkin init && cd src
git clone https://github.com/vectr-ucla/direct_lidar_odometry.git
catkin build

Execution

After sourcing the workspace, launch the DLO odometry and mapping ROS nodes via:

roslaunch direct_lidar_odometry dlo.launch \
  pointcloud_topic:=/robot/velodyne_points \
  imu_topic:=/robot/vn100/imu

Make sure to edit the pointcloud_topic and imu_topic input arguments with your specific topics. If IMU is not being used, set the dlo/imu ROS param to false in cfg/dlo.yaml. However, if IMU data is available, please allow DLO to calibrate and gravity align for three seconds before moving. Note that the current implementation assumes that LiDAR and IMU coordinate frames coincide, so please make sure that the sensors are physically mounted near each other.

Test Data

For your convenience, we provide example test data here (9 minutes, ~4.2GB). To run, first launch DLO (with default point cloud and IMU topics) via:

roslaunch direct_lidar_odometry dlo.launch

In a separate terminal session, play back the downloaded bag:

rosbag play dlo_test.bag

drawing

Citation

If you found this work useful, please cite our manuscript:

@article{chen2021direct,
  title={Direct LiDAR Odometry: Fast Localization with Dense Point Clouds},
  author={Chen, Kenny and Lopez, Brett T and Agha-mohammadi, Ali-akbar and Mehta, Ankur},
  journal={arXiv preprint arXiv:2110.00605},
  year={2021}
}

Acknowledgements

We thank the authors of the FastGICP and NanoFLANN open-source packages:

  • Kenji Koide, Masashi Yokozuka, Shuji Oishi, and Atsuhiko Banno, “Voxelized GICP for Fast and Accurate 3D Point Cloud Registration,” in IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2021, pp. 11 054–11 059.
  • Jose Luis Blanco and Pranjal Kumar Rai, “NanoFLANN: a C++ Header-Only Fork of FLANN, A Library for Nearest Neighbor (NN) with KD-Trees,” https://github.com/jlblancoc/nanoflann, 2014.

License

This work is licensed under the terms of the MIT license.


drawing drawing

drawing drawing

Comments
  • Coordinate system conversion

    Coordinate system conversion

    Hi, thanks for your great work. I used my lidar and imu to record the data set and run it in DLO. The following figure is the map generated by the algorithm. I found that IMU drift is very serious. Is this related to coordinate system transformation? How can I set up and configure files to improve this situation? d0724d53975aa58f749b1abfa692456 3ae5711ad4dc74f03c683af98bc7db9

    opened by HomieRegina 15
  • HI, I use the nanoicp to location, but it cann`t work

    HI, I use the nanoicp to location, but it cann`t work

    Thanks for your work, I want to use nanoicp to location, it cann`t work right, but I use the pcl Gicp, it can work, so, there is anything i need to do?

    opened by tust13018211 10
  • Map generation

    Map generation

    Hi, How is the map generated? What algorithm is used? Can we upload a pcd map of the environment and then apply dlo just for localisation? I assumed dlo as a localisation algorithm, but it seems to take in the point cloud data from the bag file and generate a map on its own.

    opened by Srichitra-S 9
  • gicp speed

    gicp speed

    I run source code each scan's gicp process just cost 2-3 ms, when i run my own code use gicp library it cost 100-200ms. Both Input cloud's size almost same, which setting options may cause this phenomenon?

    opened by yst1 8
  • how to localize on a given pcd map?

    how to localize on a given pcd map?

    i have a trouble understanding how to localise on a given 3d pcd map, can anyone explain the steps

    i have a pcd map which i can load into rviz, and i have lidar-points and imu data, then how to use this package for localization?

    opened by srinivasrama 6
  • jacobian

    jacobian

    Hello author, I want to derive the jacobian in the code. I see we use global perturbation to update. When i try this, i meet this problem to look for your help. image When using Woodbury matrix identity it seems to make the formula more complicated, so i'm stuck to look for your help. Thanks for your help in advance!

    Best regards Xiaoliang jiao

    opened by narutojxl 6
  • the transformation between your lidar and imu?

    the transformation between your lidar and imu?

    I use a vlp16 lidar and a microstran imu(3DM-GX5-25) to run your program. But I failed. I think my transformation between imu and lidar is different from yours. So could you tell your true transformation between imu and lidar. the following pitcure is my configuration: 453670779 Thank you very much!

    opened by nonlinear1 6
  • Conversion of lidar and IMU coordinate system

    Conversion of lidar and IMU coordinate system

    Hi! I use a vlp16 lidar and a microstran imu(3DM-GX5-25) to record bags. And here is the part of the map I built with your algorithm. Because the coordinate systems of IMU and lidar are not consistent in the physical direction, this has affected the construction of the two-layer environment. Could you please tell me how to convert IMU and lidar coordinate system? 图片

    opened by HomieRegina 4
  • some trivial questions

    some trivial questions

    Hello authors, I have some trivial questions to look for your help. Thanks for your help.

    opened by narutojxl 4
  • Coordinate Frame

    Coordinate Frame

    Hi,

    Thank you for sharing this great work.

    I've set of problem such as defining the coordinate system of the odometry . Which coordinate frame do you use for odometry NED or BODY. I thought you use NED coordinate frame so that I expected when I move Lidar + IMU to the North direction, x should be positive increased but it has not been stable behaviour. I also moved the system to the East direction it should be caused positive increase on y axis but same problem. I think you use BODY frame or something different coordinate frame for odometry.

    I wonder also how do you send odometry information to the autopilot of drone. I prefered mavros and selected the related odometry ros topic and send them without change so I saw the odometry message in the autopilot but when odometry receive to the autopilot of drone it looks like x and y exchanged in autopilot even they are not exchanged odometry output of direct lidar odometry.

    Summary of the Question is that which coordinate frame do you use for odometry ? How can I set up the odometry frame to NED? x and y are negative decreased when I move lidar+imu to the North and the East respectively. and Z looks like 180 reversed. Should I multiply x and y with minus or apply rotation matrix to fix negative decreasing x, y odometry ?

    How can I ensure that autopilot and your odometry coordinate plane are in the same coordinate plane ?

    opened by danieldive 3
  • How to correct point cloud caused by motion?

    How to correct point cloud caused by motion?

    Hi, thank you for your great work about DLO. I have a question. When the robot is moving fast, the lidar point cloud will generate distortion due to movement, which will cause negative impact on the construction of the map. So how did DLO deal with this problem?

    opened by JACKLiuDay 2
Releases(v1.4.2)
Owner
VECTR at UCLA
Verifiable & Control-Theoretic Robotics Laboratory
VECTR at UCLA
A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation

Aboleth A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation [1] with stochastic gradient variational Bayes

Gradient Institute 127 Dec 12, 2022
This project uses reinforcement learning on stock market and agent tries to learn trading. The goal is to check if the agent can learn to read tape. The project is dedicated to hero in life great Jesse Livermore.

Reinforcement-trading This project uses Reinforcement learning on stock market and agent tries to learn trading. The goal is to check if the agent can

Deepender Singla 1.4k Dec 22, 2022
An implementation of an abstract algebra for music tones (pitches).

nbdev template Use this template to more easily create your nbdev project. If you are using an older version of this template, and want to upgrade to

Open Music Kit 0 Oct 10, 2022
Compositional and Parameter-Efficient Representations for Large Knowledge Graphs

NodePiece - Compositional and Parameter-Efficient Representations for Large Knowledge Graphs NodePiece is a "tokenizer" for reducing entity vocabulary

Michael Galkin 107 Jan 04, 2023
Facial expression detector

A tensorflow convolutional neural network model to detect facial expressions.

Carlos Tardón Rubio 5 Apr 20, 2022
iris - Open Source Photos Platform Powered by PyTorch

Open Source Photos Platform Powered by PyTorch. Submission for PyTorch Annual Hackathon 2021.

Omkar Prabhu 137 Sep 10, 2022
FANet - Real-time Semantic Segmentation with Fast Attention

FANet Real-time Semantic Segmentation with Fast Attention Ping Hu, Federico Perazzi, Fabian Caba Heilbron, Oliver Wang, Zhe Lin, Kate Saenko , Stan Sc

Ping Hu 42 Nov 30, 2022
Transport Mode detection - can detect the mode of transport with the help of features such as acceeration,jerk etc

title emoji colorFrom colorTo sdk app_file pinned Transport_Mode_Detector 🚀 purple yellow gradio app.py false Configuration title: string Display tit

Nishant Rajadhyaksha 3 Jan 16, 2022
MINERVA: An out-of-the-box GUI tool for offline deep reinforcement learning

MINERVA is an out-of-the-box GUI tool for offline deep reinforcement learning, designed for everyone including non-programmers to do reinforcement learning as a tool.

Takuma Seno 80 Nov 06, 2022
A unified 3D Transformer Pipeline for visual synthesis

Overview This is the official repo for the paper: NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion. NÜWA is a unified multimodal p

Microsoft 2.6k Jan 06, 2023
Simple-Image-Classification - Simple Image Classification Code (PyTorch)

Simple-Image-Classification Simple Image Classification Code (PyTorch) Yechan Kim This repository contains: Python3 / Pytorch code for multi-class ima

Yechan Kim 8 Oct 29, 2022
Self-Supervised Vision Transformers Learn Visual Concepts in Histopathology (LMRL Workshop, NeurIPS 2021)

Self-Supervised Vision Transformers Learn Visual Concepts in Histopathology Self-Supervised Vision Transformers Learn Visual Concepts in Histopatholog

Richard Chen 95 Dec 24, 2022
Small-bets - Ergodic Experiment With Python

Ergodic Experiment Based on this video. Run this experiment with this command: p

Michael Brant 3 Jan 11, 2022
A containerized REST API around OpenAI's CLIP model.

OpenAI's CLIP — REST API This is a container wrapping OpenAI's CLIP model in a RESTful interface. Running the container locally First, build the conta

Santiago Valdarrama 48 Nov 06, 2022
[ICCV 2021] Focal Frequency Loss for Image Reconstruction and Synthesis

Focal Frequency Loss - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Focal Fre

Liming Jiang 460 Jan 04, 2023
This repo is for segmentation of T2 hyp regions in gliomas.

T2-Hyp-Segmentor This repo is for segmentation of T2 hyp regions in gliomas. By downloading the model from here you can use it to segment your T2w ima

1 Jan 18, 2022
Bayesian Inference Tools in Python

BayesPy Bayesian Inference Tools in Python Our goal is, given the discrete outcomes of events, estimate the distribution of categories. Using gradient

Max Sklar 99 Dec 14, 2022
Pytorch implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Detection"

M-LSD: Towards Light-weight and Real-time Line Segment Detection Pytorch implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Det

123 Jan 04, 2023
Unofficial PyTorch Implementation of UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation

UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation This is an unofficial PyTorch

MINDs Lab 170 Jan 04, 2023
Efficient semidefinite bounds for multi-label discrete graphical models.

Low rank solvers #################################### benchmark/ : folder with the random instances used in the paper. ############################

1 Dec 08, 2022