A Deep Learning based project for creating line art portraits.

Overview

ArtLine

Open in RunwayML Badge

forthebadge

The main aim of the project is to create amazing line art portraits.

Sounds Intresting,let's get to the pictures!!

Model-(Smooth)

Model-(Quality)

Click on the below image to know more about colab demo, credits to Bhavesh Bhatt for the amazing Youtube video.

Exciting update

Highlights

Example Images

bohemian rhapsody movie , Rami Malek American actor

bohemian

Photo by Maxim from Pexels

Imgur

Friends, TV show.

Friends

Keanu Reeves, Canadian actor.

Keanu

Hrithik Roshan

Hrithik

Alita: Battle Angel

Alita

Virat Kohli, Indian cricketer

Virat

Photo by Anastasiya Gepp from Pexels

Imgur

Interstellar

Interstellar

Pexels Portrait, Model

Imgur

Beyoncé, American singer

Beyoncé

Cartoonize

Lets cartoonize the lineart portraits, Check Toon-Me https://github.com/vijishmadhavan/Toon-Me.

Skrillex , American DJ

Imgur

Tom Hanks, Actor

Imgur

Line Art

The amazing results that the model has produced has a secret sauce to it. The initial model couldn't create the sort of output I was expecting, it mostly struggled with recognizing facial features. Even though (https://github.com/yiranran/APDrawingGAN) produced great results it had limitations like (frontal face photo similar to ID photo, preferably with clear face features, no glasses and no long fringe.) I wanted to break-in and produce results that could recognize any pose. Achieving proper lines around the face, eyes, lips and nose depends on the data you give the model. APDrawing dataset alone was not enough so I had to combine selected photos from Anime sketch colorization pair dataset. The combined dataset helped the model to learn the lines better.

Movie Poster created using ArtLine.

The movie poster was created using ArtLine in no time , it's not as good as it should be but I'm not an artist.

Poster

Poster

Technical Details

Surprise!! No critic,No GAN. GAN did not make much of a difference so I was happy with No GAN.

The mission was to create something that converts any personal photo into a line art. The initial efforts have helped to recognize lines, but still the model has to improve a lot with shadows and clothes. All my efforts are to improve the model and make line art a click away.

Imgur

Dataset

APDrawing dataset

Anime sketch colorization pair dataset

APDrawing data set consits of mostly close-up portraits so the model would struggle to recogonize cloths,hands etc. For this purpose selected images from Anime sketch colorization pair were used.

Going Forward

I hope I was clear, going forward would like to improve the model further as it still struggles with random backgrounds(I'm creating a custom dataset to address this issue). Cartoonizing the image was never part of the project, but somehow it came up and it did okay!! Still lots to improve. Ill release the cartoonize model when it looks impressive enough to show off.

I will be constantly upgrading the project for the foreseeable future.

Getting Started Yourself

The easiest way to get started is to simply try out on Colab: https://colab.research.google.com/github/vijishmadhavan/Light-Up/blob/master/ArtLine(Try_it_on_Colab).ipynb

Installation Details

This project is built around the wonderful Fast.AI library.

  • fastai==1.0.61 (and its dependencies). Please dont install the higher versions
  • PyTorch 1.6.0 Please don't install the higher versions

Limitations

  • Getting great output depends on Lighting, Backgrounds,Shadows and the quality of photos. You'll mostly get good results in the first go but there are chances for issues as well. The model is not there yet, it still needs to be tweaked to reach out to all the consumers. It might be useful for "AI Artisits/ Artists who can bring changes to the final output.

  • The model confuses shadows with hair, something that I'm trying to solve.

  • It does bad with low quality images(below 500px).

  • I'm not a coder, bear with me for the bad code and documentation. Will make sure that I improve with upcoming updates.

Updates

Get more updates on Twitter

Mail me @ [email protected]

Acknowledgments

License

All code in this repository is under the MIT license as specified by the LICENSE file.

Owner
Vijish Madhavan
Open to work
Vijish Madhavan
Controlling the MicriSpotAI robot from scratch

Project-MicroSpot-AI Controlling the MicriSpotAI robot from scratch Colaborators Alexander Dennis Components from MicroSpot The MicriSpotAI has the fo

Dennis Núñez-Fernández 5 Oct 20, 2022
Custom Implementation of Non-Deep Networks

ParNet Custom Implementation of Non-deep Networks arXiv:2110.07641 Ankit Goyal, Alexey Bochkovskiy, Jia Deng, Vladlen Koltun Official Repository https

Pritama Kumar Nayak 20 May 27, 2022
Social Fabric: Tubelet Compositions for Video Relation Detection

Social-Fabric Social Fabric: Tubelet Compositions for Video Relation Detection This repository contains the code and results for the following paper:

Shuo Chen 7 Aug 09, 2022
Deep Unsupervised 3D SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment.

(ACMMM 2021 Oral) SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment This repository shows two tasks: Face landmark detection and Fac

BoomStar 51 Dec 13, 2022
My take on a practical implementation of Linformer for Pytorch.

Linformer Pytorch Implementation A practical implementation of the Linformer paper. This is attention with only linear complexity in n, allowing for v

Peter 349 Dec 25, 2022
[CVPR 2022] Structured Sparse R-CNN for Direct Scene Graph Generation

Structured Sparse R-CNN for Direct Scene Graph Generation Our paper Structured Sparse R-CNN for Direct Scene Graph Generation has been accepted by CVP

Multimedia Computing Group, Nanjing University 44 Dec 23, 2022
[ICML 2020] DrRepair: Learning to Repair Programs from Error Messages

DrRepair: Learning to Repair Programs from Error Messages This repo provides the source code & data of our paper: Graph-based, Self-Supervised Program

Michihiro Yasunaga 155 Jan 08, 2023
Sequence modeling benchmarks and temporal convolutional networks

Sequence Modeling Benchmarks and Temporal Convolutional Networks (TCN) This repository contains the experiments done in the work An Empirical Evaluati

CMU Locus Lab 3.5k Jan 01, 2023
A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

2 Jul 25, 2022
This library contains a Tensorflow implementation of the paper Stability Analysis of Unfolded WMMSE for Power Allocation

UWMMSE-stability Tensorflow implementation of Stability Analysis of UWMMSE Overview This library contains a Tensorflow implementation of the paper Sta

Arindam Chowdhury 1 Nov 16, 2022
Source code for the Paper: CombOptNet: Fit the Right NP-Hard Problem by Learning Integer Programming Constraints}

CombOptNet: Fit the Right NP-Hard Problem by Learning Integer Programming Constraints Installation Run pipenv install (at your own risk with --skip-lo

Autonomous Learning Group 65 Dec 27, 2022
[ICML 2020] Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control

PG-MORL This repository contains the implementation for the paper Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Contro

MIT Graphics Group 65 Jan 07, 2023
Multi-Template Mouse Brain MRI Atlas (MBMA): both in-vivo and ex-vivo

Multi-template MRI mouse brain atlas (both in vivo and ex vivo) Mouse Brain MRI atlas (both in-vivo and ex-vivo) (repository relocated from the origin

8 Nov 18, 2022
Code accompanying "Learning What To Do by Simulating the Past", ICLR 2021.

Learning What To Do by Simulating the Past This repository contains code that implements the Deep Reward Learning by Simulating the Past (Deep RSLP) a

Center for Human-Compatible AI 24 Aug 07, 2021
Tutorials and implementations for "Self-normalizing networks"

Self-Normalizing Networks Tutorials and implementations for "Self-normalizing networks"(SNNs) as suggested by Klambauer et al. (arXiv pre-print). Vers

Institute of Bioinformatics, Johannes Kepler University Linz 1.6k Jan 07, 2023
Encode and decode text application

Text Encoder and Decoder Encode and decode text in many ways using this application! Encode in: ASCII85 Base85 Base64 Base32 Base16 Url MD5 Hash SHA-1

Alice 1 Feb 12, 2022
Angora is a mutation-based fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without symbolic execution.

Angora Angora is a mutation-based coverage guided fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without s

833 Jan 07, 2023
Fully Automatic Page Turning on Real Scores

Fully Automatic Page Turning on Real Scores This repository contains the corresponding code for our extended abstract Henkel F., Schwaiger S. and Widm

Florian Henkel 7 Jan 02, 2022
FeTaQA: Free-form Table Question Answering

FeTaQA: Free-form Table Question Answering FeTaQA is a Free-form Table Question Answering dataset with 10K Wikipedia-based {table, question, free-form

Language, Information, and Learning at Yale 40 Dec 13, 2022
Code for T-Few from "Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning"

T-Few This repository contains the official code for the paper: "Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learni

220 Dec 31, 2022