"Structure-Augmented Text Representation Learning for Efficient Knowledge Graph Completion"(WWW 2021)

Related tags

Deep LearningStAR_KGC
Overview

STAR_KGC

This repo contains the source code of the paper accepted by WWW'2021. "Structure-Augmented Text Representation Learning for Efficient Knowledge Graph Completion"(WWW 2021).

1. Thanks

The repository is partially based on huggingface transformers, KG-BERT and RotatE.

2. Installing requirement packages

  • conda create -n StAR python=3.6
  • source activate StAR
  • pip install numpy torch tensorboardX tqdm boto3 requests regex sacremoses sentencepiece matplotlib
2.1 Optional package (for mixed float Computation)

3. Dataset

  • WN18RR, FB15k-237, UMLS

    • Train and test set in ./data
    • As validation on original dev set is costly, we validated the model on dev subset during training.
    • The dev subset of WN18RR is provided in ./data/WN18RR called new_dev.dict. Use below commands to get the dev subset for WN18RR (FB15k-237 is similar without the --do_lower_case) used in training process.
     CUDA_VISIBLE_DEVICES=0 \
      python get_new_dev_dict.py \
     	--model_class bert \
     	--weight_decay 0.01 \
     	--learning_rate 5e-5 \
     	--adam_epsilon 1e-6 \
     	--max_grad_norm 0. \
     	--warmup_proportion 0.05 \
     	--do_train \
     	--num_train_epochs 7 \
     	--dataset WN18RR \
     	--max_seq_length 128 \
     	--gradient_accumulation_steps 4 \
     	--train_batch_size 16 \
     	--eval_batch_size 128 \
     	--logging_steps 100 \
     	--eval_steps -1 \
     	--save_steps 2000 \
     	--model_name_or_path bert-base-uncased \
     	--do_lower_case \
     	--output_dir ./result/WN18RR_get_dev \
     	--num_worker 12 \
     	--seed 42 \
    
     CUDA_VISIBLE_DEVICES=0 \
      python get_new_dev_dict.py \
     	--model_class bert \
     	--weight_decay 0.01 \
     	--learning_rate 5e-5 \
     	--adam_epsilon 1e-6 \
     	--max_grad_norm 0. \
     	--warmup_proportion 0.05 \
     	--do_eval \
     	--num_train_epochs 7 \
     	--dataset WN18RR \
     	--max_seq_length 128 \
     	--gradient_accumulation_steps 4 \
     	--train_batch_size 16 \
     	--eval_batch_size 128 \
     	--logging_steps 100 \
     	--eval_steps 1000 \
     	--save_steps 2000 \
     	--model_name_or_path ./result/WN18RR_get_dev \
     	--do_lower_case \
     	--output_dir ./result/WN18RR_get_dev \
     	--num_worker 12 \
     	--seed 42 \
    
  • NELL-One

    • We reformat original NELL-One as the three benchmarks above.
    • Please run the below command to get the reformatted data.
     python reformat_nell_one.py --data_dir path_to_downloaded --output_dir ./data/NELL_standard
    

4. Training and Test (StAR)

Run the below commands for reproducing results in paper. Note, all the eval_steps is set to -1 to train w/o validation and save the last checkpoint, because standard dev is very time-consuming. This can get similar results as in the paper.

4.1 WN18RR

CUDA_VISIBLE_DEVICES=0 \
python run_link_prediction.py \
    --model_class roberta \
    --weight_decay 0.01 \
    --learning_rate 1e-5 \
    --adam_betas 0.9,0.98 \
    --adam_epsilon 1e-6 \
    --max_grad_norm 0. \
    --warmup_proportion 0.05 \
    --do_train --do_eval \
    --do_prediction \
    --num_train_epochs 7 \
    --dataset WN18RR \
    --max_seq_length 128 \
    --gradient_accumulation_steps 4 \
    --train_batch_size 16 \
    --eval_batch_size 128 \
    --logging_steps 100 \
    --eval_steps 4000 \
    --save_steps 2000 \
    --model_name_or_path roberta-large \
    --output_dir ./result/WN18RR_roberta-large \
    --num_worker 12 \
    --seed 42 \
    --cls_method cls \
    --distance_metric euclidean \
CUDA_VISIBLE_DEVICES=2 \
python run_link_prediction.py \
    --model_class bert \
    --weight_decay 0.01 \
    --learning_rate 5e-5 \
    --adam_betas 0.9,0.98 \
    --adam_epsilon 1e-6 \
    --max_grad_norm 0. \
    --warmup_proportion 0.05 \
    --do_train --do_eval \
    --do_prediction \
    --num_train_epochs 7 \
    --dataset WN18RR \
    --max_seq_length 128 \
    --gradient_accumulation_steps 4 \
    --train_batch_size 16 \
    --eval_batch_size 128 \
    --logging_steps 100 \
    --eval_steps 4000 \
    --save_steps 2000 \
    --model_name_or_path bert-base-uncased \
    --do_lower_case \
    --output_dir ./result/WN18RR_bert \
    --num_worker 12 \
    --seed 42 \
    --cls_method cls \
    --distance_metric euclidean \

4.2 FB15k-237

CUDA_VISIBLE_DEVICES=0 \
python run_link_prediction.py \
    --model_class roberta \
    --weight_decay 0.01 \
    --learning_rate 1e-5 \
    --adam_betas 0.9,0.98 \
    --adam_epsilon 1e-6 \
    --max_grad_norm 0. \
    --warmup_proportion 0.05 \
    --do_train --do_eval \
    --do_prediction \
    --num_train_epochs 7. \
    --dataset FB15k-237 \
    --max_seq_length 100 \
    --gradient_accumulation_steps 4 \
    --train_batch_size 16 \
    --eval_batch_size 128 \
    --logging_steps 100 \
    --eval_steps -1 \
    --save_steps 2000 \
    --model_name_or_path roberta-large \
    --output_dir ./result/FB15k-237_roberta-large \
    --num_worker 12 \
    --seed 42 \
    --fp16 \
    --cls_method cls \
    --distance_metric euclidean \

4.3 UMLS

CUDA_VISIBLE_DEVICES=0 \
python run_link_prediction.py \
    --model_class roberta \
    --weight_decay 0.01 \
    --learning_rate 1e-5 \
    --adam_betas 0.9,0.98 \
    --adam_epsilon 1e-6 \
    --max_grad_norm 0. \
    --warmup_proportion 0.05 \
    --do_train --do_eval \
    --do_prediction \
    --num_train_epochs 20 \
    --dataset UMLS \
    --max_seq_length 16 \
    --gradient_accumulation_steps 1 \
    --train_batch_size 16 \
    --eval_batch_size 128 \
    --logging_steps 100 \
    --eval_steps -1 \
    --save_steps 200 \
    --model_name_or_path roberta-large \
    --output_dir ./result/UMLS_model \
    --num_worker 12 \
    --seed 42 \
    --cls_method cls \
    --distance_metric euclidean 

4.4 NELL-One

CUDA_VISIBLE_DEVICES=0 \
python run_link_prediction.py \
    --model_class bert \
    --do_train --do_eval \usepacka--do_prediction \
    --warmup_proportion 0.1 \
    --learning_rate 5e-5 \
    --num_train_epochs 8. \
    --dataset NELL_standard \
    --max_seq_length 32 \
    --gradient_accumulation_steps 1 \
    --train_batch_size 16 \
    --eval_batch_size 128 \
    --logging_steps 100 \
    --eval_steps -1 \
    --save_steps 2000 \
    --model_name_or_path bert-base-uncased \
    --do_lower_case \
    --output_dir ./result/NELL_model \
    --num_worker 12 \
    --seed 42 \
    --fp16 \
    --cls_method cls \
    --distance_metric euclidean 

5. StAR_Self-Adp

5.1 Data preprocessing

  • Get the trained model of RotatE, more details please refer to RotatE.

  • Run the below commands sequentially to get the training dataset of StAR_Self-Adp.

    • Run the run_get_ensemble_data.py in ./StAR
     CUDA_VISIBLE_DEVICES=0 python run_get_ensemble_data.py \
     	--dataset WN18RR \
     	--model_class roberta \
     	--model_name_or_path ./result/WN18RR_roberta-large \
     	--output_dir ./result/WN18RR_roberta-large \
     	--seed 42 \
     	--fp16 
    
    • Run the ./codes/run.py in rotate. (please replace the TRAINED_MODEL_PATH with your own trained model's path)
     CUDA_VISIBLE_DEVICES=3 python ./codes/run.py \
     	--cuda --init ./models/RotatE_wn18rr_0 \
     	--test_batch_size 16 \
     	--star_info_path /home/wangbo/workspace/StAR_KGC-master/StAR/result/WN18RR_roberta-large \
     	--get_scores --get_model_dataset 
    

5.2 Train and Test

  • Run the run.py in ./StAR/ensemble. Note the --mode should be alternate in head and tail, and perform a average operation to get the final results.
  • Note: Please replace YOUR_OUTPUT_DIR, TRAINED_MODEL_PATH and StAR_FILE_PATH in ./StAR/peach/common.py with your own paths to run the command and code.
CUDA_VISIBLE_DEVICES=2 python run.py \
--do_train --do_eval --do_prediction --seen_feature \
--mode tail \
--learning_rate 1e-3 \
--feature_method mix \
--neg_times 5 \
--num_train_epochs 3 \
--hinge_loss_margin 0.6 \
--train_batch_size 32 \
--test_batch_size 64 \
--logging_steps 100 \
--save_steps 2000 \
--eval_steps -1 \
--warmup_proportion 0 \
--output_dir /home/wangbo/workspace/StAR_KGC-master/StAR/result/WN18RR_roberta-large_ensemble  \
--dataset_dir /home/wangbo/workspace/StAR_KGC-master/StAR/result/WN18RR_roberta-large \
--context_score_path /home/wangbo/workspace/StAR_KGC-master/StAR/result/WN18RR_roberta-large \
--translation_score_path /home/wangbo/workspace/StAR_KGC-master/rotate/models/RotatE_wn18rr_0  \
--seed 42 
Owner
Bo Wang
Ph.D. student at the School of Artificial Intelligence, Jilin University.
Bo Wang
Data, notebooks, and articles associated with the RSNA AI Deep Learning Lab at RSNA 2021

RSNA AI Deep Learning Lab 2021 Intro Welcome Deep Learners! This document provides all the information you need to participate in the RSNA AI Deep Lea

RSNA 65 Dec 16, 2022
Import Python modules from dicts and JSON formatted documents.

Paker Paker is module for importing Python packages/modules from dictionaries and JSON formatted documents. It was inspired by httpimporter. Important

Wojciech Wentland 1 Sep 07, 2022
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation

ENet in Caffe Execution times and hardware requirements Network 1024x512 1280x720 Parameters Model size (fp32) ENet 20.4 ms 32.9 ms 0.36 M 1.5 MB SegN

Timo Sämann 561 Jan 04, 2023
This code is for eCaReNet: explainable Cancer Relapse Prediction Network.

eCaReNet This code is for eCaReNet: explainable Cancer Relapse Prediction Network. (Towards Explainable End-to-End Prostate Cancer Relapse Prediction

Institute of Medical Systems Biology 2 Jul 28, 2022
Custom studies about block sparse attention.

Block Sparse Attention 研究总结 本人近半年来对Block Sparse Attention(块稀疏注意力)的研究总结(持续更新中)。按时间顺序,主要分为如下三部分: PyTorch 自定义 CUDA 算子——以矩阵乘法为例 基于 Triton 的 Block Sparse A

Chen Kai 2 Jan 09, 2022
Food recognition model using convolutional neural network & computer vision

Food recognition model using convolutional neural network & computer vision. The goal is to match or beat the DeepFood Research Paper

Hemanth Chandran 1 Jan 13, 2022
code for our ECCV-2020 paper: Self-supervised Video Representation Learning by Pace Prediction

Video_Pace This repository contains the code for the following paper: Jiangliu Wang, Jianbo Jiao and Yunhui Liu, "Self-Supervised Video Representation

Jiangliu Wang 95 Dec 14, 2022
PyTorch implementations of algorithms for density estimation

pytorch-flows A PyTorch implementations of Masked Autoregressive Flow and some other invertible transformations from Glow: Generative Flow with Invert

Ilya Kostrikov 546 Dec 05, 2022
General-purpose program synthesiser

DeepSynth General-purpose program synthesiser. This is the repository for the code of the paper "Scaling Neural Program Synthesis with Distribution-ba

Nathanaël Fijalkow 24 Oct 23, 2022
Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (CVAMD)

Is it Time to Replace CNNs with Transformers for Medical Images? Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (C

Christos Matsoukas 80 Dec 27, 2022
A list of multi-task learning papers and projects.

This page contains a list of papers on multi-task learning for computer vision. Please create a pull request if you wish to add anything. If you are interested, consider reading our recent survey pap

svandenh 297 Dec 17, 2022
An updated version of virtual model making

Model-Swap-Face v2   这个项目是基于stylegan2 pSp制作的,比v1版本Model-Swap-Face在推理速度和图像质量上有一定提升。主要的功能是将虚拟模特进行环球不同区域的风格转换,目前转换器提供西欧模特、东亚模特和北非模特三种主流的风格样式,可帮我们实现生产资料零成

seeprettyface.com 62 Dec 09, 2022
Accuracy Aligned. Concise Implementation of Swin Transformer

Accuracy Aligned. Concise Implementation of Swin Transformer This repository contains the implementation of Swin Transformer, and the training codes o

FengWang 77 Dec 16, 2022
SketchEdit: Mask-Free Local Image Manipulation with Partial Sketches

SketchEdit: Mask-Free Local Image Manipulation with Partial Sketches [Paper]  [Project Page]  [Interactive Demo]  [Supplementary Material]        Usag

215 Dec 25, 2022
Codes for SIGIR'22 Paper 'On-Device Next-Item Recommendation with Self-Supervised Knowledge Distillation'

OD-Rec Codes for SIGIR'22 Paper 'On-Device Next-Item Recommendation with Self-Supervised Knowledge Distillation' Paper, saved teacher models and Andro

Xin Xia 11 Nov 22, 2022
Codes for the ICCV'21 paper "FREE: Feature Refinement for Generalized Zero-Shot Learning"

FREE This repository contains the reference code for the paper "FREE: Feature Refinement for Generalized Zero-Shot Learning". [arXiv][Paper] 1. Prepar

Shiming Chen 28 Jul 29, 2022
the code of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021)

RMA-Net This repo is the implementation of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021). Paper

Wanquan Feng 205 Nov 09, 2022
This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.

This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.

212 Dec 25, 2022
In this work, we will implement some basic but important algorithm of machine learning step by step.

WoRkS continued English 中文 Français Probability Density Estimation-Non-Parametric Methods(概率密度估计-非参数方法) 1. Kernel / k-Nearest Neighborhood Density Est

liziyu0104 1 Dec 30, 2021
Pytorch implementation of our method for regularizing nerual radiance fields for few-shot neural volume rendering.

InfoNeRF: Ray Entropy Minimization for Few-Shot Neural Volume Rendering Pytorch implementation of our method for regularizing nerual radiance fields f

106 Jan 06, 2023