Revisiting Video Saliency: A Large-scale Benchmark and a New Model (CVPR18, PAMI19)

Overview

DHF1K

===========================================================================

Wenguan Wang, J. Shen, M.-M Cheng and A. Borji,

Revisiting Video Saliency: A Large-scale Benchmark and a New Model,

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018 and

IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2019

===========================================================================

The code (ACLNet) and dataset (DHF1K with raw gaze records, UCF-sports are new added!) can be downloaded from:

Google disk:https://drive.google.com/open?id=1sW0tf9RQMO4RR7SyKhU8Kmbm4jwkFGpQ

Baidu pan: https://pan.baidu.com/s/110NIlwRIiEOTyqRwYdDnVg

The Hollywood-2 (74.6G, including attention maps) can be downloaded from:

Google disk:https://drive.google.com/file/d/1vfRKJloNSIczYEOVjB4zMK8r0k4VJuWk/view?usp=sharing

Baidu pan: link:https://pan.baidu.com/s/16BIAuaGEDDbbjylJ8zziuA code:bt3x

Since so many people are interested in the training code, I decide to upload it in above webdisks. Enjoy it.

===========================================================================

Files:

'video': 1000 videos (videoname.AVI)

'annotation/videoname/maps': continuous saliency maps in '.png' format

'annotation/videoname/fixation': binary eye fixation maps in '.png' format

'annotation/videoname/maps': binary eye fixation maps stored in mat file

'generate_frame.m': used for extracting the frame images from AVI videos.

Please note raw data of individual viewers are stored in 'exportdata_train.rar'.

Note that please do not change the way of naming frames.

===========================================================================

Dataset splitting:

Training set: first 600 videos (001.AVI-600.AVI)

Validation set: 100 videos (601.AVI-700.AVI)

Testing set: 300 videos (701.AVI-1000.AVI)

The annotations for the training and val sets are released, but the

annotations of the testing set are held-out for benchmarking.

===========================================================================

We have corrected some statistics of our results (baseline training setting (iii)) on UCF sports dataset. Please see our newest version in ArXiv.

===========================================================================

Note that, for Holly-wood2 dataset, we used the split videos (each video only contains one shot), instead of the full videos.

===========================================================================

The raw data of gaze record "exportdata_train.rar" has been uploaded.

===========================================================================

For DHF1K dataset, we use following functions to generate continous saliency map:

[x,y]=find(fixations);

densityMap= make_gauss_masks(y,x,[video_res_y,video_res_x]);

make_gauss_masks.m has been uploaded.

For UCF and Hollywood, I directly use following functions:

densityMap = imfilter(fixations,fspecial('gaussian',150,20),'replicate');

===========================================================================

Results submission.

Please orgnize your results in following format:

yourmethod/videoname/framename.png

Note that the frames and framenames should be generated by 'generate_frame.m'.

Then send your results to '[email protected]'.

You can only sumbmit ONCE within One week.

Please first test your model on the val set or other video saliency dataset.

The response may be more than one week.

If you want to list your results on our web, please send your name, model

name, paper title, short description of your method and the link of the web

of your project (if you have).

===========================================================================

We use

Keras: 2.2.2

tensorflow: 1.10.0

to implement our model.

===========================================================================

Citation:

@InProceedings{Wang_2018_CVPR,
author = {Wang, Wenguan and Shen, Jianbing and Guo, Fang and Cheng, Ming-Ming and Borji, Ali},
title = {Revisiting Video Saliency: A Large-Scale Benchmark and a New Model},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition},
year = {2018}
}

@ARTICLE{Wang_2019_revisitingVS, 
author={W. {Wang} and J. {Shen} and J. {Xie} and M. {Cheng} and H. {Ling} and A. {Borji}}, 
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, 
title={Revisiting Video Saliency Prediction in the Deep Learning Era}, 
year={2019}, 
}

If you find our dataset is useful, please cite above papers.

===========================================================================

Code (ACLNet):

You can find the code in google disk: https://drive.google.com/open?id=1sW0tf9RQMO4RR7SyKhU8Kmbm4jwkFGpQ

===========================================================================

Terms of use:

The dataset and code are licensed under a Creative Commons Attribution 4.0 License.

===========================================================================

Contact Information Email: [email protected]


Owner
Wenguan Wang
Postdoctoral Scholar
Wenguan Wang
Physics-Informed Neural Networks (PINN) and Deep BSDE Solvers of Differential Equations for Scientific Machine Learning (SciML) accelerated simulation

NeuralPDE NeuralPDE.jl is a solver package which consists of neural network solvers for partial differential equations using scientific machine learni

SciML Open Source Scientific Machine Learning 680 Jan 02, 2023
Build upon neural radiance fields to create a scene-specific implicit 3D semantic representation, Semantic-NeRF

Semantic-NeRF: Semantic Neural Radiance Fields Project Page | Video | Paper | Data In-Place Scene Labelling and Understanding with Implicit Scene Repr

Shuaifeng Zhi 243 Jan 07, 2023
Contrastive Learning Inverts the Data Generating Process

Official code to reproduce the results and data presented in the paper Contrastive Learning Inverts the Data Generating Process.

71 Nov 25, 2022
Code for the paper "Generative design of breakwaters usign deep convolutional neural network as a surrogate model"

Generative design of breakwaters usign deep convolutional neural network as a surrogate model This repository contains the code for the paper "Generat

2 Apr 10, 2022
Code repository accompanying the paper "On Adversarial Robustness: A Neural Architecture Search perspective"

On Adversarial Robustness: A Neural Architecture Search perspective Preparation: Clone the repository: https://github.com/tdchaitanya/nas-robustness.g

Chaitanya Devaguptapu 4 Nov 10, 2022
Project repo for Learning Category-Specific Mesh Reconstruction from Image Collections

Learning Category-Specific Mesh Reconstruction from Image Collections Angjoo Kanazawa*, Shubham Tulsiani*, Alexei A. Efros, Jitendra Malik University

438 Dec 22, 2022
Re-implememtation of MAE (Masked Autoencoders Are Scalable Vision Learners) using PyTorch.

mae-repo PyTorch re-implememtation of "masked autoencoders are scalable vision learners". In this repo, it heavily borrows codes from codebase https:/

Peng Qiao 1 Dec 14, 2021
Face detection using deep learning.

Face Detection Docker Solution Using Faster R-CNN Dockerface is a deep learning face detector. It deploys a trained Faster R-CNN network on Caffe thro

Nataniel Ruiz 181 Dec 19, 2022
VLGrammar: Grounded Grammar Induction of Vision and Language

VLGrammar: Grounded Grammar Induction of Vision and Language

Yining Hong 27 Dec 23, 2022
Providing the solutions for high-frequency trading (HFT) strategies using data science approaches (Machine Learning) on Full Orderbook Tick Data.

Modeling High-Frequency Limit Order Book Dynamics Using Machine Learning Framework to capture the dynamics of high-frequency limit order books. Overvi

Chang-Shu Chung 1.3k Jan 07, 2023
A Pytorch Implementation of [Source data‐free domain adaptation of object detector through domain

A Pytorch Implementation of Source data‐free domain adaptation of object detector through domain‐specific perturbation Please follow Faster R-CNN and

1 Dec 25, 2021
A machine learning malware analysis framework for Android apps.

🕵️ A machine learning malware analysis framework for Android apps. ☢️ DroidDetective is a Python tool for analysing Android applications (APKs) for p

James Stevenson 77 Dec 27, 2022
Generative code template for PixelBeasts 10k NFT project.

generator-template Generative code template for combining transparent png attributes into 10,000 unique images. Used for the PixelBeasts 10k NFT proje

Yohei Nakajima 9 Aug 24, 2022
CAMPARI: Camera-Aware Decomposed Generative Neural Radiance Fields

CAMPARI: Camera-Aware Decomposed Generative Neural Radiance Fields Paper | Supplementary | Video | Poster If you find our code or paper useful, please

26 Nov 29, 2022
Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Ibai Gorordo 42 Oct 07, 2022
An improvement of FasterGICP: Acceptance-rejection Sampling based 3D Lidar Odometry

fasterGICP This package is an improvement of fast_gicp Please cite our paper if possible. W. Jikai, M. Xu, F. Farzin, D. Dai and Z. Chen, "FasterGICP:

79 Dec 31, 2022
Lightweight Cuda Renderer with Python Wrapper.

pyRender Lightweight Cuda Renderer with Python Wrapper. Compile Change compile.sh line 5 to the glm library include path. This library can be download

Jingwei Huang 53 Dec 02, 2022
SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021)

SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021) PyTorch implementation of SnapMix | paper Method Overview Cite

DavidHuang 126 Dec 30, 2022
Alex Pashevich 62 Dec 24, 2022
Pytorch reimplementation of the Mixer (MLP-Mixer: An all-MLP Architecture for Vision)

MLP-Mixer Pytorch reimplementation of Google's repository for the MLP-Mixer (Not yet updated on the master branch) that was released with the paper ML

Eunkwang Jeon 18 Dec 08, 2022