Pytorch implementation for "Density-aware Chamfer Distance as a Comprehensive Metric for Point Cloud Completion" (NeurIPS 2021)

Overview

Density-aware Chamfer Distance

This repository contains the official PyTorch implementation of our paper:

Density-aware Chamfer Distance as a Comprehensive Metric for Point Cloud Completion, NeurIPS 2021

Tong Wu, Liang Pan, Junzhe Zhang, Tai Wang, Ziwei Liu, Dahua Lin

avatar

We present a new point cloud similarity measure named Density-aware Chamfer Distance (DCD). It is derived from CD and benefits from several desirable properties: 1) it can detect disparity of density distributions and is thus a more intensive measure of similarity compared to CD; 2) it is stricter with detailed structures and significantly more computationally efficient than EMD; 3) the bounded value range encourages a more stable and reasonable evaluation over the whole test set. DCD can be used as both an evaluation metric and the training loss. We mainly validate its performance on point cloud completion in our paper.

This repository includes:

  • Implementation of Density-aware Chamfer Distance (DCD).
  • Implementation of our method for this task and the pre-trained model.

Installation

Requirements

  • PyTorch 1.2.0
  • Open3D 0.9.0
  • Other dependencies are listed in requirements.txt.

Install

Install PyTorch 1.2.0 first, and then get the other requirements by running the following command:

bash setup.sh

Dataset

We use the MVP Dataset. Please download the train set and test set and then modify the data path in data/mvp_new.py to the your own data location. Please refer to their codebase for further instructions.

Usage

Density-aware Chamfer Distance

The function for DCD calculation is defined in def calc_dcd() in utils/model_utils.py.

Users of higher PyTorch versions may try def calc_dcd() in utils_v2/model_utils.py, which has been tested on PyTorch 1.6.0 .

Model training and evaluation

  • To train a model: run python train.py ./cfgs/*.yaml, for example:
python train.py ./cfgs/vrc_plus.yaml
  • To test a model: run python train.py ./cfgs/*.yaml --test_only, for example:
python train.py ./cfgs/vrc_plus_eval.yaml --test_only
  • Config for each algorithm can be found in cfgs/.
  • run_train.sh and run_test.sh are provided for SLURM users.

We provide the following config files:

  • pcn.yaml: PCN trained with CD loss.
  • vrc.yaml: VRCNet trained with CD loss.
  • pcn_dcd.yaml: PCN trained with DCD loss.
  • vrc_dcd.yaml: VRCNet trained with DCD loss.
  • vrc_plus.yaml: training with our method.
  • vrc_plus_eval.yaml: evaluation of our method with guided down-sampling.

Attention: We empirically find that using DP or DDP for training would slightly hurt the performance. So training on multiple cards is not well supported currently.

Pre-trained models

We provide the pre-trained model that reproduce the results in our paper. Download and extract it to the ./log/pretrained/ directory, and then evaluate it with cfgs/vrc_plus_eval.yaml. The setting prob_sample: True turns on the guided down-sampling. We also provide the model for VRCNet trained with DCD loss here.

Citation

If you find our code or paper useful, please cite our paper:

@inproceedings{wu2021densityaware,
  title={Density-aware Chamfer Distance as a Comprehensive Metric for Point Cloud Completion},
  author={Tong Wu, Liang Pan, Junzhe Zhang, Tai WANG, Ziwei Liu, Dahua Lin},
  booktitle={In Advances in Neural Information Processing Systems (NeurIPS), 2021},
  year={2021}
}

Acknowledgement

The code is based on the VRCNet implementation. We include the following PyTorch 3rd-party libraries: ChamferDistancePytorch, emd, expansion_penalty, MDS, and Pointnet2.PyTorch. Thanks for these great projects.

Contact

Please contact @wutong16 for questions, comments and reporting bugs.

Owner
Tong WU
Tong WU
TinyML Cookbook, published by Packt

TinyML Cookbook This is the code repository for TinyML Cookbook, published by Packt. Author: Gian Marco Iodice Publisher: Packt About the book This bo

Packt 93 Dec 29, 2022
The Fundamental Clustering Problems Suite (FCPS) summaries 54 state-of-the-art clustering algorithms, common cluster challenges and estimations of the number of clusters as well as the testing for cluster tendency.

FCPS Fundamental Clustering Problems Suite The package provides over sixty state-of-the-art clustering algorithms for unsupervised machine learning pu

9 Nov 27, 2022
OpenABC-D: A Large-Scale Dataset For Machine Learning Guided Integrated Circuit Synthesis

OpenABC-D: A Large-Scale Dataset For Machine Learning Guided Integrated Circuit Synthesis Overview OpenABC-D is a large-scale labeled dataset generate

NYU Machine-Learning guided Design Automation (MLDA) 31 Nov 22, 2022
A Transformer-Based Siamese Network for Change Detection

ChangeFormer: A Transformer-Based Siamese Network for Change Detection (Under review at IGARSS-2022) Wele Gedara Chaminda Bandara, Vishal M. Patel Her

Wele Gedara Chaminda Bandara 214 Dec 29, 2022
Minimal PyTorch implementation of YOLOv3

A minimal PyTorch implementation of YOLOv3, with support for training, inference and evaluation.

Erik Linder-Norén 6.9k Dec 29, 2022
Hidden-Fold Networks (HFN): Random Recurrent Residuals Using Sparse Supermasks

Hidden-Fold Networks (HFN): Random Recurrent Residuals Using Sparse Supermasks by Ángel López García-Arias, Masanori Hashimoto, Masato Motomura, and J

Ángel López García-Arias 4 May 19, 2022
Rank 1st in the public leaderboard of ScanRefer (2021-03-18)

InstanceRefer InstanceRefer: Cooperative Holistic Understanding for Visual Grounding on Point Clouds through Instance Multi-level Contextual Referring

63 Dec 07, 2022
A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization

MADGRAD Optimization Method A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization pip install madgrad Try it out! A best

Meta Research 774 Dec 31, 2022
Parameter-ensemble-differential-evolution - Shows how to do parameter ensembling using differential evolution.

Ensembling parameters with differential evolution This repository shows how to ensemble parameters of two trained neural networks using differential e

Sayak Paul 9 May 04, 2022
MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python

Digital Image Processing Python MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python TO-DO: Refactor scripts, curren

Merve Noyan 24 Oct 16, 2022
Code for the paper: Adversarial Machine Learning: Bayesian Perspectives

Code for the paper: Adversarial Machine Learning: Bayesian Perspectives This repository contains code for reproducing the experiments in the ** Advers

Roi Naveiro 2 Nov 11, 2022
Facebook Research 605 Jan 02, 2023
3rd Place Solution of the Traffic4Cast Core Challenge @ NeurIPS 2021

3rd Place Solution of Traffic4Cast 2021 Core Challenge This is the code for our solution to the NeurIPS 2021 Traffic4Cast Core Challenge. Paper Our so

7 Jul 25, 2022
Official implementation of "Membership Inference Attacks Against Self-supervised Speech Models"

Introduction Official implementation of "Membership Inference Attacks Against Self-supervised Speech Models". In this work, we demonstrate that existi

Wei-Cheng Tseng 7 Nov 01, 2022
This is a Pytorch implementation of paper: DropEdge: Towards Deep Graph Convolutional Networks on Node Classification

DropEdge: Towards Deep Graph Convolutional Networks on Node Classification This is a Pytorch implementation of paper: DropEdge: Towards Deep Graph Con

401 Dec 16, 2022
Notes taking website build with Docker + Django + React.

Notes website. Try it in browser! / But how to run? Description. This is monorepository with notes website. Website provides web interface for creatin

Kirill Zhosul 2 Jul 27, 2022
Automatically replace ONNX's RandomNormal node with Constant node.

onnx-remove-random-normal This is a script to replace RandomNormal node with Constant node. Example Imagine that we have something ONNX model like the

Masashi Shibata 1 Dec 11, 2021
This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation".

ObjProp Introduction This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Insta

Anirudh S Chakravarthy 6 May 03, 2022
Certifiable Outlier-Robust Geometric Perception

Certifiable Outlier-Robust Geometric Perception About This repository holds the implementation for certifiably solving outlier-robust geometric percep

83 Dec 31, 2022
AoT is a system for automatically generating off-target test harness by using build information.

AoT: Auto off-Target Automatically generating off-target test harness by using build information. Brought to you by the Mobile Security Team at Samsun

Samsung 10 Oct 19, 2022