使用Mask LM预训练任务来预训练Bert模型。训练垂直领域语料的模型表征,提升下游任务的表现。

Overview

Pretrain_Bert_with_MaskLM

Info

使用Mask LM预训练任务来预训练Bert模型。

基于pytorch框架,训练关于垂直领域语料的预训练语言模型,目的是提升下游任务的表现。

Pretraining Task

Mask Language Model,简称Mask LM,即基于Mask机制的预训练语言模型。

同时支持 原生的MaskLM任务和Whole Words Masking任务。默认使用Whole Words Masking

MaskLM

使用来自于Bert的mask机制,即对于每一个句子中的词(token):

  • 85%的概率,保留原词不变
  • 15%的概率,使用以下方式替换
    • 80%的概率,使用字符[MASK],替换当前token。
    • 10%的概率,使用词表随机抽取的token,替换当前token。
    • 10%的概率,保留原词不变。

Whole Words Masking

与MaskLM类似,但是在mask的步骤有些少不同。

在Bert类模型中,考虑到如果单独使用整个词作为词表的话,那词表就太大了。不利于模型对同类词的不同变种的特征学习,故采用了WordPiece的方式进行分词。

Whole Words Masking的方法在于,在进行mask操作时,对象变为分词前的整个词,而非子词。

Model

使用原生的Bert模型作为基准模型。

Datasets

项目里的数据集来自wikitext,分成两个文件训练集(train.txt)和测试集(test.txt)。

数据以行为单位存储。

若想要替换成自己的数据集,可以使用自己的数据集进行替换。(注意:如果是预训练中文模型,需要修改配置文件Config.py中的self.initial_pretrain_modelself.initial_pretrain_tokenizer,将值修改成 bert-base-chinese

自己的数据集不需要做mask机制处理,代码会处理。

Training Target

本项目目的在于基于现有的预训练模型参数,如google开源的bert-base-uncasedbert-base-chinese等,在垂直领域的数据语料上,再次进行预训练任务,由此提升bert的模型表征能力,换句话说,也就是提升下游任务的表现。

Environment

项目主要使用了Huggingface的datasetstransformers模块,支持CPU、单卡单机、单机多卡三种模式。

可通过以下命令安装依赖包

    pip install -r requirement.txt

主要包含的模块如下:

    python3.6
    torch==1.3.0
    tqdm==4.61.2
    transformers==4.6.1
    datasets==1.10.2
    numpy==1.19.5
    pandas==1.1.3

Get Start

单卡模式

直接运行以下命令

    python train.py

或修改Config.py文件中的变量self.cuda_visible_devices为单卡后,运行

    chmod 755 run.sh
    ./run.sh

多卡模式

如果你足够幸运,拥有了多张GPU卡,那么恭喜你,你可以进入起飞模式。 🚀 🚀

(1)使用torch的nn.parallel.DistributedDataParallel模块进行多卡训练。其中config.py文件中参数如下,默认可以不用修改。

  • self.cuda_visible_devices表示程序可见的GPU卡号,示例:1,2→可在GPU卡号为1和2上跑,亦可以改多张,如0,1,2,3
  • self.device在单卡模式,表示程序运行的卡号;在多卡模式下,表示master的主卡,默认会变成你指定卡号的第一张卡。若只有cpu,那么可修改为cpu
  • self.port表示多卡模式下,进程通信占用的端口号。(无需修改)
  • self.init_method表示多卡模式下进程的通讯地址。(无需修改)
  • self.world_size表示启动的进程数量(无需修改)。在torch==1.3.0版本下,只需指定一个进程。在1.9.0以上,需要与GPU数量相同。

(2)运行程序启动命令

    chmod 755 run.sh
    ./run.sh

Experiment

使用交叉熵(cross-entropy)作为损失函数,困惑度(perplexity)和Loss作为评价指标来进行训练,训练过程如下:

Reference

【Bert】https://arxiv.org/pdf/1810.04805.pdf

【transformers】https://github.com/huggingface/transformers

【datasets】https://huggingface.co/docs/datasets/quicktour.html

Owner
Desmond Ng
NLP Engineer
Desmond Ng
Différents programmes créant une interface graphique a l'aide de Tkinter pour simplifier la vie des étudiants.

GP211-Grand-Projet Ce repertoire contient tout les programmes nécessaires au bon fonctionnement de notre projet-logiciel. Cette interface graphique es

1 Dec 21, 2021
Unsupervised text tokenizer for Neural Network-based text generation.

SentencePiece SentencePiece is an unsupervised text tokenizer and detokenizer mainly for Neural Network-based text generation systems where the vocabu

Google 6.4k Jan 01, 2023
Mlcode - Continuous ML API Integrations

mlcode Basic APIs for ML applications. Django REST Application Contains REST API

Sujith S 1 Jan 01, 2022
Contains analysis of trends from Fitbit Dataset (source: Kaggle) to see how the trends can be applied to Bellabeat customers and Bellabeat products

Contains analysis of trends from Fitbit Dataset (source: Kaggle) to see how the trends can be applied to Bellabeat customers and Bellabeat products.

Leah Pathan Khan 2 Jan 12, 2022
Stand-alone language identification system

langid.py readme Introduction langid.py is a standalone Language Identification (LangID) tool. The design principles are as follows: Fast Pre-trained

2k Jan 04, 2023
Natural Language Processing Best Practices & Examples

NLP Best Practices In recent years, natural language processing (NLP) has seen quick growth in quality and usability, and this has helped to drive bus

Microsoft 6.1k Dec 31, 2022
Transformers and related deep network architectures are summarized and implemented here.

Transformers: from NLP to CV This is a practical introduction to Transformers from Natural Language Processing (NLP) to Computer Vision (CV) Introduct

Ibrahim Sobh 138 Dec 27, 2022
Problem: Given a nepali news find the category of the news

Classification of category of nepali news catorgory using different algorithms Problem: Multiclass Classification Approaches: TFIDF for vectorization

pudasainishushant 2 Jan 09, 2022
An attempt to map the areas with active conflict in Ukraine using open source twitter data.

Live Action Map (LAM) An attempt to use open source data on Twitter to map areas with active conflict. Right now it is used for the Ukraine-Russia con

Kinshuk Dua 171 Nov 21, 2022
🤗Transformers: State-of-the-art Natural Language Processing for Pytorch and TensorFlow 2.0.

State-of-the-art Natural Language Processing for PyTorch and TensorFlow 2.0 🤗 Transformers provides thousands of pretrained models to perform tasks o

Hugging Face 77.3k Jan 03, 2023
Learn meanings behind words is a key element in NLP. This project concentrates on the disambiguation of preposition senses. Therefore, we train a bert-transformer model and surpass the state-of-the-art.

New State-of-the-Art in Preposition Sense Disambiguation Supervisor: Prof. Dr. Alexander Mehler Alexander Henlein Institutions: Goethe University TTLa

Dirk Neuhäuser 4 Apr 06, 2022
Python library for processing Chinese text

SnowNLP: Simplified Chinese Text Processing SnowNLP是一个python写的类库,可以方便的处理中文文本内容,是受到了TextBlob的启发而写的,由于现在大部分的自然语言处理库基本都是针对英文的,于是写了一个方便处理中文的类库,并且和TextBlob

Rui Wang 6k Jan 02, 2023
Suite of 500 procedurally-generated NLP tasks to study language model adaptability

TaskBench500 The TaskBench500 dataset and code for generating tasks. Data The TaskBench dataset is available under wget http://web.mit.edu/bzl/www/Tas

Belinda Li 20 May 17, 2022
Neural-Machine-Translation - Implementation of revolutionary machine translation models

Neural Machine Translation Framework: PyTorch Repository contaning my implementa

Utkarsh Jain 1 Feb 17, 2022
Code for CodeT5: a new code-aware pre-trained encoder-decoder model.

CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation This is the official PyTorch implementation

Salesforce 564 Jan 08, 2023
2021 AI CUP Competition on Traditional Chinese Scene Text Recognition - Intermediate Contest

繁體中文場景文字辨識 程式碼說明 組別:這就是我 成員:蔣明憲 唐碩謙 黃玥菱 林冠霆 蕭靖騰 目錄 環境套件 安裝方式 資料夾布局 前處理-製作偵測訓練註解檔 前處理-製作分類訓練樣本 part.py : 從 json 裁切出分類訓練樣本 Class.py : 將切出來的樣本按照文字分類到各資料夾

HuanyueTW 3 Jan 14, 2022
A CRM department in a local bank works on classify their lost customers with their past datas. So they want predict with these method that average loss balance and passive duration for future.

Rule-Based-Classification-in-a-Banking-Case. A CRM department in a local bank works on classify their lost customers with their past datas. So they wa

ÖMER YILDIZ 4 Mar 20, 2022
this repository has datasets containing information of Uber pickups in NYC from April 2014 to September 2014 and January to June 2015. data Analysis , virtualization and some insights are gathered here

uber-pickups-analysis Data Source: https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-york-city Information about data set The dataset contain

1 Nov 02, 2021
Applied Natural Language Processing in the Enterprise - An O'Reilly Media Publication

Applied Natural Language Processing in the Enterprise This is the companion repo for Applied Natural Language Processing in the Enterprise, an O'Reill

Applied Natural Language Processing in the Enterprise 95 Jan 05, 2023
Source code of the "Graph-Bert: Only Attention is Needed for Learning Graph Representations" paper

Graph-Bert Source code of "Graph-Bert: Only Attention is Needed for Learning Graph Representations". Please check the script.py as the entry point. We

14 Mar 25, 2022