BakTst_Org is a backtesting system for quantitative transactions.

Overview

BakTst_Org

中文reademe:传送门

Introduction: BakTst_Org is a prototype of the backtesting system used for BTC quantitative trading.


mind Mapping This readme is mainly divided into the following parts:

  • What kind of person is suitable for studying BakTst_Org?
  • import library
  • BakTst_Org's framework and various modules of the framework
  • How to use BakTst_Org?
  • Extension
  • Question
  • Results map
  • Some ideas for the future
  • Thanks list

What kind of person is suitable for studying BakTst_Org?

BakTst_Org is just a prototype, so the rows of code is not large. It's about four hundred lines. But it also has all the features you need, such as: multi-process, simulation, a crawler that obtain trading data.

So it is suitable for these people:

  • Python enthusiast
  • Script developer
  • Financial enthusiasts
  • Quantify traders

Library to be imported

Talib, multiprocessing, pandas, json, numpy, time, requests

BakTst framework and introduction to each module of the framework

BakTst_Org mainly divides six modules:

  • craw (crawler module)
  • Feed (data acquisition module)
  • Strategy (strategy module)
  • Portfollio (position management module)
  • Execution (order execution module)
  • main function

craw

This module is a separate module, and the API called is the bittrex api, which is mainly used to obtain transaction data and then write to the txt file.

Api: https://api.bittrex.com/api/v1.1/public/getmarkethistory?market=usdt-btc If you want to obtain a transaction data of a currency, you only need to modify the last usdt-btc transaction pair. For example: 'usdt to ltc', you can modify it to usdt-ltc.

The time limit for getting is 60 requests per minute, so a time.sleep(1) is added.

The data that I obtained is divided into two files, one is the complete transaction data that includes details of each transaction, and the other is consisted of a time period information that includes the highest price, the lowest price, the opening price, the closing price, the transaction volume and the time.

For the format of the data, please checking the value of the two txt files in the ‘craw/’ path.

Feed

This module is used to transfer the transaction data and the initialized data into BakTst.

The initialized data includes these parameters:

  • data: The highest price, lowest price, opening price, closing price, time, and the transaction volume in a period of time. And the format is dataframe.
  • coin_number: The number of coins already owned by us.
  • principal: The principal already owned by us.

Strategy

This module is used to analyze the transaction data to predict the trend of price. Firstly it receives the transaction data from the Feed module. Secondly, it will analyze the transaction data through some function in Strategy module. Thirdly, it will sets buy_index (buy index) and sell_index (sell index). Lastly, it will transport the buy_index and the sell_index to Portfollio module.

The total structure of the Strategy module includes two parts. The one is 'Strategy.py' that is writed Strategic judgment, and the other one is 'Strategy_fun.py' file that writed two strategic functions, and a format conversion function.

Portfollio

This module is used to manage position. Although we have judged the buying and selling trend, we need to limit the position. For example, we can set a limiting that the proportion of the position must less than 0.5. So, this module plays a limiting role. Then, the opening and selling signals will be sent to the next one--Execution module.

There are the meaning of some parameters:

  • buy_amount and sell_amount: It is a fixed rate to trade. The fixed rate may not be same in the real situation, but we just use a software to trade.
  • trade_sigle: It is a trading signal. The ‘sell’ is for sale. The ‘buy’ is for purchase. The ‘None’ is for inaction. In the subsequent code, that is a judgment basis.
  • judge_position: It is standard to judge position, and the value is less than 1.

Execution

This module is used to execute an order to simulate the real situation about trading. And it will eventually return a total profit and loss. There are the meaning of some parameters:

  • tip: Handling fee.
  • buy_flap: The slippage of buying.
  • sell_flap: The slippage of selling.
  • buy_last_price and sell_last_price: the last price of trading.

Main function

This module is used to convert the data of the txt document into the data of the dataframe format and send it to the whole system. Finally, the system will return a final number of the coin and the number of the principal. Then, it will compares the initial price and final price to calculate profit and loss. There are the meaning of some parameters:

  • earn: earn.
  • lose: loss.
  • balance: no loss, no profit.

How to use BakTst_Org

  • Firstly, you need to collect data by using the craw.py file in the craw module.
  • Secondly, you need to run the BakTst_Org.py file to see the output.

Extension

  • Dynamic variable: Some values is fixed, such as principal, position and handling fee. But there are some values ​​that can be dynamically changed, such as slippage, single billing amount.
  • Function of the 'Strategy_fun.py' in Strategy module: I just wrote two functions, but you can add more.

Question

There are two questions that I met:

  • I have met a problem about naming coverage. The open is a function in python, and I use with open (addr , 'w') as w: already, so there was a mistake when I use 'open' to representative the 'open price'.
  • It is a problem acout Multi-process. I used the Multi-process pool. But when I add the method in class to the Multi-process pool, I found out that I can't call them. Finally, I can call these methods, but I need to run multiple processes on the outside of class.

Results map

result1 result2

Some ideas for the future

I published BakTst_Org, and everyone can reference from it. But if it is used to trade in the real quantitative transaction, it can't. I will develop a quantitative trading system that can be used to trade in the real quantitative transaction based on BakTst_Org.

Thanks list

  • Thanks to everyone in 慢雾区远不止狗币技术群, helped me solve some programming problems.
  • Thanks to greatshi. Greatshi,a master in the field of quantitative trading. He patiently answered some questions that I met. Thank you.
A plugin to introduce a generic API for Decompiler support in GEF

decomp2gef A plugin to introduce a generic API for Decompiler support in GEF. Like GEF, the plugin is battery-included and requires no external depend

Zion 379 Jan 08, 2023
The tutorial is a collection of many other resources and my own notes

Why we need CTC? --- looking back on history 1.1. About CRNN 1.2. from Cross Entropy Loss to CTC Loss Details about CTC 2.1. intuition: forward algor

手写AI 7 Sep 19, 2022
freeCodeCamp Scientific Computing with Python Project for Certification.

Polygon_Area_Calculator freeCodeCamp Python Project freeCodeCamp Scientific Computing with Python Project for Certification. In this project you will

Rajdeep Mondal 1 Dec 23, 2021
epub2sphinx is a tool to convert epub files to ReST for Sphinx

epub2sphinx epub2sphinx is a tool to convert epub files to ReST for Sphinx. It uses Pandoc for converting HTML data inside epub files into ReST. It cr

Nihaal 8 Dec 15, 2022
k3heap is a binary min heap implemented with reference

k3heap k3heap is a binary min heap implemented with reference k3heap is a component of pykit3 project: a python3 toolkit set. In this module RefHeap i

pykit3 1 Nov 13, 2021
Workbench to integrate pyoptools with freecad, that means basically optics ray tracing capabilities for FreeCAD.

freecad-pyoptools Workbench to integrate pyoptools with freecad, that means basically optics ray tracing capabilities for FreeCAD. Requirements It req

Combustión Ingenieros SAS 12 Nov 16, 2022
This tutorial will guide you through the process of self-hosting Polygon

Hosting guide This tutorial will guide you through the process of self-hosting Polygon Before starting Make sure you have the following tools installe

Polygon 2 Jan 31, 2022
Run `black` on python code blocks in documentation files

blacken-docs Run black on python code blocks in documentation files. install pip install blacken-docs usage blacken-docs provides a single executable

Anthony Sottile 460 Dec 23, 2022
Automatically open a pull request for repositories that have no CONTRIBUTING.md file

automatic-contrib-prs Automatically open a pull request for repositories that have no CONTRIBUTING.md file for a targeted set of repositories. What th

GitHub 8 Oct 20, 2022
Test utility for validating OpenAPI documentation

DRF OpenAPI Tester This is a test utility to validate DRF Test Responses against OpenAPI 2 and 3 schema. It has built-in support for: OpenAPI 2/3 yaml

snok 106 Jan 05, 2023
Yet Another MkDocs Parser

yamp Motivation You want to document your project. You make an effort and write docstrings. You try Sphinx. You think it sucks and it's slow -- I did.

Max Halford 10 May 20, 2022
Dynamic Resume Generator

Dynamic Resume Generator

Quinten Lisowe 15 May 19, 2022
Mkdocs obsidian publish - Publish your obsidian vault through a python script

Mkdocs Obsidian Mkdocs Obsidian is an association between a python script and a

Mara 49 Jan 09, 2023
swagger-codegen contains a template-driven engine to generate documentation, API clients and server stubs in different languages by parsing your OpenAPI / Swagger definition.

Master (2.4.25-SNAPSHOT): 3.0.31-SNAPSHOT: Maven Central ⭐ ⭐ ⭐ If you would like to contribute, please refer to guidelines and a list of open tasks. ⭐

Swagger 15.2k Dec 31, 2022
A complete kickstart devcontainer repository for python3

A complete kickstart devcontainer repository for python3

Viktor Freiman 3 Dec 23, 2022
The source code that powers readthedocs.org

Welcome to Read the Docs Purpose Read the Docs hosts documentation for the open source community. It supports Sphinx docs written with reStructuredTex

Read the Docs 7.4k Dec 25, 2022
VSCode extension that generates docstrings for python files

VSCode Python Docstring Generator Visual Studio Code extension to quickly generate docstrings for python functions. Features Quickly generate a docstr

Nils Werner 506 Jan 03, 2023
Example Python code for running the mango-explorer marketmaker

🥭 Mango Explorer 📖 Introduction This guide will show you how to load and run a customisable marketmaker that runs on Mango Markets using the mango-e

Blockworks Foundation 2 Apr 11, 2022
A PyTorch implementation of Deep SAD, a deep Semi-supervised Anomaly Detection method.

Deep SAD: A Method for Deep Semi-Supervised Anomaly Detection This repository provides a PyTorch implementation of the Deep SAD method presented in ou

Lukas Ruff 276 Jan 04, 2023
SqlAlchemy Flask-Restful Swagger Json:API OpenAPI

SAFRS: Python OpenAPI & JSON:API Framework Overview Installation JSON:API Interface Resource Objects Relationships Methods Custom Methods Class Method

Thomas Pollet 361 Nov 16, 2022