Official implementation of the paper Label-Efficient Semantic Segmentation with Diffusion Models

Overview

Label-Efficient Semantic Segmentation with Diffusion Models

Official implementation of the paper Label-Efficient Semantic Segmentation with Diffusion Models

This code is based on datasetGAN and guided-diffusion.

Note: use --recurse-submodules when clone.

 

Overview

The paper investigates the representations learned by the state-of-the-art DDPMs and shows that they capture high-level semantic information valuable for downstream vision tasks. We design a simple segmentation approach that exploits these representations and outperforms the alternatives in the few-shot operating point in the context of semantic segmentation.

DDPM-based Segmentation

 

Dependencies

  • Python >= 3.7
  • Packages: see requirements.txt

 

Datasets

The evaluation is performed on 6 collected datasets with a few annotated images in the training set: Bedroom-18, FFHQ-34, Cat-15, Horse-21, CelebA-19 and ADE-Bedroom-30. The number corresponds to the number of semantic classes.

datasets.tar.gz (~47Mb)

 

DDPM

Pretrained DDPMs

The models trained on LSUN are adopted from guided-diffusion. FFHQ-256 is trained by ourselves using the same model parameters as for the LSUN models.

LSUN-Bedroom: lsun_bedroom.pt
FFHQ-256: ffhq.pt
LSUN-Cat: lsun_cat.pt
LSUN-Horse: lsun_horse.pt

Run

  1. Download the datasets:
      bash datasets/download_datasets.sh
  2. Download the DDPM checkpoint:
       bash checkpoints/ddpm/download_checkpoint.sh
  3. Check paths in experiments/ /ddpm.json
  4. Run: bash scripts/ddpm/train_interpreter.sh

Available checkpoint names: lsun_bedroom, ffhq, lsun_cat, lsun_horse
Available dataset names: bedroom_28, ffhq_34, cat_15, horse_21, celeba_19, ade_bedroom_30

How to improve the performance

  1. Set input_activations=true in experiments/ /ddpm.json .
       In this case, the feature dimension is 18432.
  2. Tune for a particular task what diffusion steps and UNet blocks to use.

 

DatasetDDPM

Synthetic datasets

To download DDPM-produced synthetic datasets (50000 samples, ~7Gb):
bash synthetic-datasets/gan/download_synthetic_dataset.sh

Run | Option #1

  1. Download the synthetic dataset:
       bash synthetic-datasets/ddpm/download_synthetic_dataset.sh
  2. Check paths in experiments/ /datasetDDPM.json
  3. Run: bash scripts/datasetDDPM/train_deeplab.sh

Run | Option #2

  1. Download the datasets:
       bash datasets/download_datasets.sh

  2. Download the DDPM checkpoint:
       bash checkpoints/ddpm/download_checkpoint.sh

  3. Check paths in experiments/ /datasetDDPM.json

  4. Train an interpreter on a few DDPM-produced annotated samples:
       bash scripts/datasetDDPM/train_interpreter.sh

  5. Generate a synthetic dataset:
       bash scripts/datasetDDPM/generate_dataset.sh
        Please specify the hyperparameters in this script for the available resources.
        On 8xA100 80Gb, it takes about 12 hours to generate 10000 samples.

  6. Run: bash scripts/datasetDDPM/train_deeplab.sh
       One needs to specify the path to the generated data. See comments in the script.

Available checkpoint names: lsun_bedroom, ffhq, lsun_cat, lsun_horse
Available dataset names: bedroom_28, ffhq_34, cat_15, horse_21

 

SwAV

Pretrained SwAVs

We pretrain SwAV models using the official implementation on the LSUN and FFHQ-256 datasets:

LSUN-Bedroom: lsun_bedroom.pth
FFHQ-256: ffhq.pth
LSUN-Cat: lsun_cat.pth
LSUN-Horse: lsun_horse.pth

Training setup:

Dataset epochs batch-size multi-crop num-prototypes
LSUN 200 1792 2x256 + 6x108 1000
FFHQ-256 400 2048 2x224 + 6x96 200

Run

  1. Download the datasets:
       bash datasets/download_datasets.sh
  2. Download the SwAV checkpoint:
       bash checkpoints/swav/download_checkpoint.sh
  3. Check paths in experiments/ /swav.json
  4. Run: bash scripts/swav/train_interpreter.sh

Available checkpoint names: lsun_bedroom, ffhq, lsun_cat, lsun_horse
Available dataset names: bedroom_28, ffhq_34, cat_15, horse_21, celeba_19, ade_bedroom_30

 

DatasetGAN

Opposed to the official implementation, more recent StyleGAN2(-ADA) models are used.

Synthetic datasets

To download GAN-produced synthetic datasets (50000 samples):

bash synthetic-datasets/gan/download_synthetic_dataset.sh

Run

Since we almost fully adopt the official implementation, we don't provide our reimplementation here. However, one can still reproduce our results:

  1. Download the synthetic dataset:
      bash synthetic-datasets/gan/download_synthetic_dataset.sh
  2. Change paths in experiments/ /datasetDDPM.json
  3. Change paths and run: bash scripts/datasetDDPM/train_deeplab.sh

Available dataset names: bedroom_28, ffhq_34, cat_15, horse_21

 

Results

  • Performance in terms of mean IoU:
Method Bedroom-28 FFHQ-34 Cat-15 Horse-21 CelebA-19 ADE-Bedroom-30
ALAE 20.0 ± 1.0 48.1 ± 1.3 -- -- 49.7 ± 0.7 15.0 ± 0.5
VDVAE -- 57.3 ± 1.1 -- -- 54.1 ± 1.0 --
GAN Inversion 13.9 ± 0.6 51.7 ± 0.8 21.4 ± 1.7 17.7 ± 0.4 51.5 ± 2.3 11.1 ± 0.2
GAN Encoder 22.4 ± 1.6 53.9 ± 1.3 32.0 ± 1.8 26.7 ± 0.7 53.9 ± 0.8 15.7 ± 0.3
SwAV 41.0 ± 2.3 54.7 ± 1.4 44.1 ± 2.1 51.7 ± 0.5 53.2 ± 1.0 30.3 ± 1.5
DatasetGAN 31.3 ± 2.7 57.0 ± 1.0 36.5 ± 2.3 45.4 ± 1.4 -- --
DatasetDDPM 46.9 ± 2.8 56.0 ± 0.9 45.4 ± 2.8 60.4 ± 1.2 -- --
DDPM 46.1 ± 1.9 57.0 ± 1.4 52.3 ± 3.0 63.1 ± 0.9 57.0 ± 1.0 32.3 ± 1.5

 

  • Examples of segmentation masks predicted by the DDPM-based method:
DDPM-based Segmentation

 

Cite

@misc{baranchuk2021labelefficient,
      title={Label-Efficient Semantic Segmentation with Diffusion Models}, 
      author={Dmitry Baranchuk and Ivan Rubachev and Andrey Voynov and Valentin Khrulkov and Artem Babenko},
      year={2021},
      eprint={2112.03126},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
Yandex Research
Yandex Research
CoSMA: Convolutional Semi-Regular Mesh Autoencoder. From Paper "Mesh Convolutional Autoencoder for Semi-Regular Meshes of Different Sizes"

Mesh Convolutional Autoencoder for Semi-Regular Meshes of Different Sizes Implementation of CoSMA: Convolutional Semi-Regular Mesh Autoencoder arXiv p

Fraunhofer SCAI 10 Oct 11, 2022
Let Python optimize the best stop loss and take profits for your TradingView strategy.

TradingView Machine Learning TradeView is a free and open source Trading View bot written in Python. It is designed to support all major exchanges. It

Robert Roman 473 Jan 09, 2023
Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness

Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness Code for Paper "Imbalanced Gradients: A Subtle Cause of Overestimated Adv

Hanxun Huang 11 Nov 30, 2022
Machine Learning Framework for Operating Systems - Brings ML to Linux kernel

KML: A Machine Learning Framework for Operating Systems & Storage Systems Storage systems and their OS components are designed to accommodate a wide v

File systems and Storage Lab (FSL) 186 Nov 24, 2022
The code for replicating the experiments from the LFI in SSMs with Unknown Dynamics paper.

Likelihood-Free Inference in State-Space Models with Unknown Dynamics This package contains the codes required to run the experiments in the paper. Th

Alex Aushev 0 Dec 27, 2021
Emotion classification of online comments based on RNN

emotion_classification Emotion classification of online comments based on RNN, the accuracy of the model in the test set reaches 99% data: Large Movie

1 Nov 23, 2021
Curating a dataset for bioimage transfer learning

CytoImageNet A large-scale pretraining dataset for bioimage transfer learning. Motivation In past few decades, the increase in speed of data collectio

Stanley Z. Hua 9 Jun 20, 2022
Few-Shot Graph Learning for Molecular Property Prediction

Few-shot Graph Learning for Molecular Property Prediction Introduction This is the source code and dataset for the following paper: Few-shot Graph Lea

Zhichun Guo 94 Dec 12, 2022
DLFlow is a deep learning framework.

DLFlow是一套深度学习pipeline,它结合了Spark的大规模特征处理能力和Tensorflow模型构建能力。利用DLFlow可以快速处理原始特征、训练模型并进行大规模分布式预测,十分适合离线环境下的生产任务。利用DLFlow,用户只需专注于模型开发,而无需关心原始特征处理、pipeline构建、生产部署等工作。

DiDi 152 Oct 27, 2022
RLMeta is a light-weight flexible framework for Distributed Reinforcement Learning Research.

RLMeta rlmeta - a flexible lightweight research framework for Distributed Reinforcement Learning based on PyTorch and moolib Installation To build fro

Meta Research 281 Dec 22, 2022
Language models are open knowledge graphs ( non official implementation )

language-models-are-knowledge-graphs-pytorch Language models are open knowledge graphs ( work in progress ) A non official reimplementation of Languag

theblackcat102 132 Dec 18, 2022
ParaGen is a PyTorch deep learning framework for parallel sequence generation

ParaGen is a PyTorch deep learning framework for parallel sequence generation. Apart from sequence generation, ParaGen also enhances various NLP tasks, including sequence-level classification, extrac

Bytedance Inc. 169 Dec 22, 2022
Exploring Classification Equilibrium in Long-Tailed Object Detection, ICCV2021

Exploring Classification Equilibrium in Long-Tailed Object Detection (LOCE, ICCV 2021) Paper Introduction The conventional detectors tend to make imba

52 Nov 21, 2022
Computational Methods Course at UdeA. Forked and size reduced from:

Computational Methods for Physics & Astronomy Book version at: https://restrepo.github.io/ComputationalMethods by: Sebastian Bustamante 2014/2015 Dieg

Diego Restrepo 11 Sep 10, 2022
Wind Speed Prediction using LSTMs in PyTorch

Implementation of Deep-Forecast using PyTorch Deep Forecast: Deep Learning-based Spatio-Temporal Forecasting Adapted from original implementation Setu

Onur Kaplan 151 Dec 14, 2022
[ACL-IJCNLP 2021] "EarlyBERT: Efficient BERT Training via Early-bird Lottery Tickets"

EarlyBERT This is the official implementation for the paper in ACL-IJCNLP 2021 "EarlyBERT: Efficient BERT Training via Early-bird Lottery Tickets" by

VITA 13 May 11, 2022
Extracting and filtering paraphrases by bridging natural language inference and paraphrasing

nli2paraphrases Source code repository accompanying the preprint Extracting and filtering paraphrases by bridging natural language inference and parap

Matej Klemen 1 Mar 09, 2022
This tutorial repository is to introduce the functionality of KGTK to first-time users

Welcome to the KGTK notebook tutorial The goal of this tutorial repository is to introduce the functionality of KGTK to first-time users. The Knowledg

USC ISI I2 58 Dec 21, 2022
Self-Supervised Multi-Frame Monocular Scene Flow (CVPR 2021)

Self-Supervised Multi-Frame Monocular Scene Flow 3D visualization of estimated depth and scene flow (overlayed with input image) from temporally conse

Visual Inference Lab @TU Darmstadt 85 Dec 22, 2022
Multiview Dataset Toolkit

Multiview Dataset Toolkit Using multi-view cameras is a natural way to obtain a complete point cloud. However, there is to date only one multi-view 3D

11 Dec 22, 2022