Underwater industrial application yolov5m6

Overview

underwater-industrial-application-yolov5m6

This project wins the intelligent algorithm contest finalist award and stands out from over 2000teams in China Underwater Robot Professional Contest, entering the final of China Underwater Robot Professional Contest and ranking 13 out of 31 teams in finals.

和鲸社区Kesci 水下光学目标检测产业应用赛项

环境:

mmdetection

+ 操作系统:Ubuntu 18.04.2
+ GPU:1块2080Ti
+ Python:Python 3.7.7
+ NVIDIA依赖:
    - NVCC: Cuda compilation tools, release 10.1, V10.1.243
    - CuDNN 7.6.5
+ 深度学习框架:
    - PyTorch: 1.8.1
    - TorchVision: 0.9.1
    - OpenCV
    - MMCV
    - MMDetection(注意data clean 的版本不同)

yolov5

训练环境:
	+ 操作系统:Ubuntu 18.04.2
	+ GPU:1块2080Ti
	+ Python:Python 3.7.7
测试环境:
	 NVIDIA Jetson AGX Xavier


# pip install -r requirements.txt

# base ----------------------------------------
matplotlib>=3.2.2
numpy>=1.18.5
opencv-python>=4.1.2
Pillow
PyYAML>=5.3.1
scipy>=1.4.1
torch>=1.7.0
torchvision>=0.8.1
tqdm>=4.41.0

# logging -------------------------------------
tensorboard>=2.4.1
# wandb

# plotting ------------------------------------
seaborn>=0.11.0
pandas

# export --------------------------------------
# coremltools>=4.1
# onnx>=1.9.0
# scikit-learn==0.19.2  # for coreml quantization
# tensorflow==2.4.1  # for TFLite export

# extras --------------------------------------
# Cython  # for pycocotools https://github.com/cocodataset/cocoapi/issues/172
# pycocotools>=2.0  # COCO mAP
# albumentations>=1.0.3
thop  # FLOPs computation

第一大步:@数据清理

文件说明:data_clean_Code用于数据清理

data_clean_Code/yangtiming-underwater-master ->为湛江赛拿第20名方案
data_clean_Code/underwater-detection-master  ->为triks团队湛江赛方案

使用说明

1. (这一步用我的yangtiming-underwater-master替代原有的cascade_rcnn_x101_64x4d_fpn_dcn_e15 )【原因精度更高A榜0.562】

模型采用 cascade_rcnn_x101_64x4d_fpn_dcn_e15  
+ Backbone:
    + ResNeXt101-64x4d
+ Neck:
    + FPN
+ DCN
+ Global context(GC)
+ MS [(4096, 600), (4096, 1000)]
+ RandomRotate90°
+ 15epochs + step:[11, 13]  
+ A榜:0.55040585 
    + 注:不是所有数据

2. 基于1训练好的模型对训练数据进行清洗(tools/data_process/data_clean.py)

+ 1. 如果某张图片上所有预测框的confidence没有一个是大于0.9, 那么去掉该图片(即看不清的图片)
+ 2. 修正错误标注
    + 1. 先过滤掉confidence<0.1的predict boxes, 然后同GT boxes求iou
    + 2. 如果predict box同GT的最大iou大于0.6,但类别不一致, 那么就修正该gt box的类别
trainall.json (与bbox1)修后的到   trainall-revised.json

3. 基于2修正后的数据进行训练->(基于2修正后的到 trainall-revised.json 修正采用cascade_rcnn_r50_rfp_sac后的到-> bbox3

模型采用cascade_rcnn_r50_rfp_sac
+ Backbone:
+ ResNet50
+ Neck:
RFP-SAC
+ GC + MS + RandomRotate90°
+ cascade_iou调整为:(0.55, 0.65, 0.75)
+ A榜: 0.56339531
+ 注:所有数据

4. 基于3训练好的模型进一步清洗数据.

->  trainall-revised-v3.json(与bbox3) 	进一步清洗数据 -> trainall-revised-v4.json)
+ 模型同3: 
+ A榜:0.56945031
    + 注:所有数据
在验证集上面测试精度:1. 执行完mAP0.5:0.95=0.547 4. 执行完mAP0.5:0.95 = 0.560

第二大步:@数据清理完毕后,改用yolov5 (code/yolov5_V5_chuli_focal_loss_attention)

使用背景介绍:
使用模型为yolov5m6系列,迭代tricks的时候,采取用--img 640 进行迭代

最优模型:

最终在yolov5m6上面的精度为:mAP0.5:0.95= 0.5374,agx速度0.2s每张
最好模型:
1.yolov5m6
2.数据清洗
2.attention模块:senet
3.hsv_h,hsv_s,hsv_v=0
4.focal_loss

使用的tricks如下:(按照时间顺序)

1.按照第一大步的数据清洗:由原来的mAP0.5:0.95= 0.465->0.4880
2.yolov5当中的hsv_h,hsv_s,hsv_v均设为0,mAP0.5:0.95= 0.4880 ->0.4940
3.在loss.py当中加入focal_loss损失函数(157行,172行),mAP0.5:0.95= 0.4940 ->0.4977
4.更改原有yolov5的c3层改为senet(attention模块),mAP0.5:0.95= 0.4977 -> 0.50069

以上按照

python train.py  --weights weights/yolov5m6.pt --cfg models/hub/yolov5m6-senet.yaml --data data/underwater.yaml  --hyp data/hyps/hyp.scratch-p6.yaml --epochs 100 --batch-size 25 --img 640

最终要提交的时候,按照

python train.py  --weights weights/yolov5m6.pt --cfg models/hub/yolov5m6-senet.yaml --data data/underwater.yaml  --hyp data/hyps/hyp.scratch-p6.yaml --epochs 250 --batch-size 4 --img 1280 --multi-scale

【注意:multi-scale大小可以在train.py文件夹下面更改】

测试

python3 val_tm_txt_csv.py --data  /data/underwater.yaml   --weights weights/best_05374.pt --img 1280 --save-txt --save-conf --half

【--half能提升速度(fp16),精度比fp32更高】

################

若要测试mAP,可以用 https://github.com/rafaelpadilla/review_object_detection_metrics.git

以下为比赛文档说明

若有权限问题,则执行前 chmod +x main_test.sh

1. 将测试集的图片放在本文件夹当中名字为test
2.最终结果将放在answer当中(执行后自动生成)
3.code文件夹为全部代码,以及包含训练权重
4.执行main_test.sh开始运行



(*)Q:何时开始计时?(注意:在执行main_test.sh之前命令窗口拉长,否则计时无法看到进度条)
当执行 python3 ./val_tm_txt_csv.py 时,看见如下界面表示计时开始
##                 Class     Images     Labels          P          R     [email protected] [email protected]:.95:   0%|          | 0/xxx [00:00

reference

+yolov5

+yangtiming/underwater-mmdetection

+team-tricks

Repository for publicly available deep learning models developed in Rosetta community

trRosetta2 This package contains deep learning models and related scripts used by Baker group in CASP14. Installation Linux/Mac clone the package git

81 Dec 29, 2022
A Fast and Accurate One-Stage Approach to Visual Grounding, ICCV 2019 (Oral)

One-Stage Visual Grounding ***** New: Our recent work on One-stage VG is available at ReSC.***** A Fast and Accurate One-Stage Approach to Visual Grou

Zhengyuan Yang 118 Dec 05, 2022
Trading and Backtesting environment for training reinforcement learning agent or simple rule base algo.

TradingGym TradingGym is a toolkit for training and backtesting the reinforcement learning algorithms. This was inspired by OpenAI Gym and imitated th

Yvictor 1.1k Jan 02, 2023
Exploring Image Deblurring via Blur Kernel Space (CVPR'21)

Exploring Image Deblurring via Encoded Blur Kernel Space About the project We introduce a method to encode the blur operators of an arbitrary dataset

VinAI Research 118 Dec 19, 2022
"MST++: Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction" (CVPRW 2022) & (Winner of NTIRE 2022 Challenge on Spectral Reconstruction from RGB)

MST++: Multi-stage Spectral-wise Transformer for Efficient Spectral Reconstruction (CVPRW 2022) Yuanhao Cai, Jing Lin, Zudi Lin, Haoqian Wang, Yulun Z

Yuanhao Cai 274 Jan 05, 2023
This repository contains the reference implementation for our proposed Convolutional CRFs.

ConvCRF This repository contains the reference implementation for our proposed Convolutional CRFs in PyTorch (Tensorflow planned). The two main entry-

Marvin Teichmann 553 Dec 07, 2022
Sum-Product Probabilistic Language

Sum-Product Probabilistic Language SPPL is a probabilistic programming language that delivers exact solutions to a broad range of probabilistic infere

MIT Probabilistic Computing Project 57 Nov 17, 2022
Final Project for the CS238: Decision Making Under Uncertainty course at Stanford University in Autumn '21.

Final Project for the CS238: Decision Making Under Uncertainty course at Stanford University in Autumn '21. We optimized wind turbine placement in a wind farm, subject to wake effects, using Q-learni

Manasi Sharma 2 Sep 27, 2022
PyTorch implementation of DeepLab v2 on COCO-Stuff / PASCAL VOC

DeepLab with PyTorch This is an unofficial PyTorch implementation of DeepLab v2 [1] with a ResNet-101 backbone. COCO-Stuff dataset [2] and PASCAL VOC

Kazuto Nakashima 995 Jan 08, 2023
ICCV2021 - A New Journey from SDRTV to HDRTV.

ICCV2021 - A New Journey from SDRTV to HDRTV.

XyChen 82 Dec 27, 2022
2020 CCF大数据与计算智能大赛-非结构化商业文本信息中隐私信息识别-第7名方案

2020CCF-NER 2020 CCF大数据与计算智能大赛-非结构化商业文本信息中隐私信息识别-第7名方案 bert base + flat + crf + fgm + swa + pu learning策略 + clue数据集 = test1单模0.906 词向量

67 Oct 19, 2022
YOLOX is a high-performance anchor-free YOLO, exceeding yolov3~v5 with ONNX, TensorRT, ncnn, and OpenVINO supported.

Introduction YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and ind

7.7k Jan 03, 2023
Pre-training of Graph Augmented Transformers for Medication Recommendation

G-Bert Pre-training of Graph Augmented Transformers for Medication Recommendation Intro G-Bert combined the power of Graph Neural Networks and BERT (B

101 Dec 27, 2022
Collection of NLP model explanations and accompanying analysis tools

Thermostat is a large collection of NLP model explanations and accompanying analysis tools. Combines explainability methods from the captum library wi

126 Nov 22, 2022
This repository contains PyTorch code for Robust Vision Transformers.

This repository contains PyTorch code for Robust Vision Transformers.

117 Dec 07, 2022
A smaller subset of 10 easily classified classes from Imagenet, and a little more French

Imagenette 🎶 Imagenette, gentille imagenette, Imagenette, je te plumerai. 🎶 (Imagenette theme song thanks to Samuel Finlayson) NB: Versions of Image

fast.ai 718 Jan 01, 2023
PyTorch-based framework for Deep Hedging

PFHedge: Deep Hedging in PyTorch PFHedge is a PyTorch-based framework for Deep Hedging. PFHedge Documentation Neural Network Architecture for Efficien

139 Dec 30, 2022
Uni-Fold: Training your own deep protein-folding models

Uni-Fold: Training your own deep protein-folding models. This package provides an implementation of a trainable, Transformer-based deep protein foldin

DP Technology 187 Jan 04, 2023
Transfer SemanticKITTI labeles into other dataset/sensor formats.

LiDAR-Transfer Transfer SemanticKITTI labeles into other dataset/sensor formats. Content Convert datasets (NUSCENES, FORD, NCLT) to KITTI format Minim

Photogrammetry & Robotics Bonn 64 Nov 21, 2022
Adaptation through prediction: multisensory active inference torque control

Adaptation through prediction: multisensory active inference torque control Submitted to IEEE Transactions on Cognitive and Developmental Systems Abst

Cristian Meo 1 Nov 07, 2022