Source code for "Understanding Knowledge Integration in Language Models with Graph Convolutions"

Related tags

Deep LearningGCS_KI
Overview

Graph Convolution Simulator (GCS)

Source code for "Understanding Knowledge Integration in Language Models with Graph Convolutions"

Requirements:

PyTorch and DGL should be installed based on your system. For other libraries, you can install them using the following command:

$ pip install -r requirements.txt

Run Knowledge Integration Interpretation (KI) by GCS on example data:

$ bash run_example.sh

Interpretation results are saved in ./example/example_data/gcs.edgelist.

If the knowledge graph is small, users can visualize it by ./example/example_data/results.pdf. Here is the results for the example data: image

Run Knowledge Intergration Interpretation by GCS for your own model

Step 1: Prepare the entity embedding of vanilla LM and knowledge-enhanced LM:

Store them as PyTorch tensor (.pt) format. Make sure they have the same number of rows, and the indexes of entities are the same. The default files are emb_roberta.pt and emb_kadapter.pt.

Step 2: Prepare the knowledge graph:

Three files are needed to load the knowledge graph:

  • a) qid2idx.json: The index dictionary. The key is entity Q-label, and value is the index of entity in entity embedding
  • b) qid2label.json : The label dictionary. The key is entity Q-label, and the value is the entity label text. Note that this dictionary is only for visualization, you can set it as {Q-label: Q-label} if you don't have the text.
  • c) kg.edgelist: The knowledge triple to construct knowledge graph. Each row is for one triple as: entity1_idx \t entity2_idx \t {}.

Step 3: Run GCS for KI interpretation:

After two preparation steps, you can run GCS by:

$ python src/example.py  --emb_vlm emb_roberta.pt  -emb_klm emb_kadapter.pt  --data_dir ./example_data  --lr 1e-3  --loss mi_loss

As for the hyperparameters, users may check them in ./example/src/example.py. Note that for large knowledge graphs, we recommend to use mutual information loss (mi_loss), and please do not visualize the results for large knowledge graphs.

Step 4: Analyze GCS interpretation results:

The interpretation results are saved in ./example/example_data/gcs.edgelist. Each row is for one triple as: entity1_idx \t entity2_idx \t {'a': xxxx}. Here, the value of 'a' is the attention coefficient value on the triple/entity (entity1, r, entity2). Users may use them to analyze the factual knowledge learned during knowledge integration.

Reproduce the results in the paper

Please enter ./all_exp folder for more details

Cite

If you use the code, please cite the paper:

@article{hou2022understanding,
  title={Understanding Knowledge Integration in Language Models with Graph Convolutions},
  author={Hou, Yifan and Fu, Guoji and Sachan, Mrinmaya},
  journal={arXiv preprint arXiv:2202.00964},
  year={2022}
}

Contact

Feel free to open an issue or send me ([email protected]) an email if you have any questions!

Owner
yifan
yifan
The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift

TwoStageAlign The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift Pa

Shi Guo 32 Dec 15, 2022
Implementation of Neonatal Seizure Detection using EEG signals for deploying on edge devices including Raspberry Pi.

NeonatalSeizureDetection Description Link: https://arxiv.org/abs/2111.15569 Citation: @misc{nagarajan2021scalable, title={Scalable Machine Learn

Vishal Nagarajan 11 Nov 08, 2022
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Master Docs License Apache MXNet (incubating) is a deep learning framework designed for both efficiency an

ROCm Software Platform 29 Nov 16, 2022
An open software package to develop BCI based brain and cognitive computing technology for recognizing user's intention using deep learning

An open software package to develop BCI based brain and cognitive computing technology for recognizing user's intention using deep learning

deepbci 272 Jan 08, 2023
PyTorch implementation of Advantage async actor-critic Algorithms (A3C) in PyTorch

Advantage async actor-critic Algorithms (A3C) in PyTorch @inproceedings{mnih2016asynchronous, title={Asynchronous methods for deep reinforcement lea

LEI TAI 111 Dec 08, 2022
Implementation of character based convolutional neural network

Character Based CNN This repo contains a PyTorch implementation of a character-level convolutional neural network for text classification. The model a

Ahmed BESBES 248 Nov 21, 2022
A basic neural network for image segmentation.

Unet_erythema_detection A basic neural network for image segmentation. 前期准备 1.在logs文件夹中下载h5权重文件,百度网盘链接在logs文件夹中 2.将所有原图 放置在“/dataset_1/JPEGImages/”文件夹

1 Jan 16, 2022
Deep learning with dynamic computation graphs in TensorFlow

TensorFlow Fold TensorFlow Fold is a library for creating TensorFlow models that consume structured data, where the structure of the computation graph

1.8k Dec 28, 2022
Cross Quality LFW: A database for Analyzing Cross-Resolution Image Face Recognition in Unconstrained Environments

Cross-Quality Labeled Faces in the Wild (XQLFW) Here, we release the database, evaluation protocol and code for the following paper: Cross Quality LFW

Martin Knoche 10 Dec 12, 2022
Evaluating AlexNet features at various depths

Linear Separability Evaluation This repo provides the scripts to test a learned AlexNet's feature representation performance at the five different con

Yuki M. Asano 32 Dec 30, 2022
An official implementation of "Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation" (CVPR 2021) in PyTorch.

BANA This is the implementation of the paper "Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation". For more inf

CV Lab @ Yonsei University 59 Dec 12, 2022
Temporally Efficient Vision Transformer for Video Instance Segmentation, CVPR 2022, Oral

Temporally Efficient Vision Transformer for Video Instance Segmentation Temporally Efficient Vision Transformer for Video Instance Segmentation (CVPR

Hust Visual Learning Team 203 Dec 31, 2022
Fuzzification helps developers protect the released, binary-only software from attackers who are capable of applying state-of-the-art fuzzing techniques

About Fuzzification Fuzzification helps developers protect the released, binary-only software from attackers who are capable of applying state-of-the-

gts3.org (<a href=[email protected])"> 55 Oct 25, 2022
Semantic Scholar's Author Disambiguation Algorithm & Evaluation Suite

S2AND This repository provides access to the S2AND dataset and S2AND reference model described in the paper S2AND: A Benchmark and Evaluation System f

AI2 54 Nov 28, 2022
LVI-SAM: Tightly-coupled Lidar-Visual-Inertial Odometry via Smoothing and Mapping

LVI-SAM This repository contains code for a lidar-visual-inertial odometry and mapping system, which combines the advantages of LIO-SAM and Vins-Mono

Tixiao Shan 1.1k Dec 27, 2022
DiAne is a smart fuzzer for IoT devices

Diane Diane is a fuzzer for IoT devices. Diane works by identifying fuzzing triggers in the IoT companion apps to produce valid yet under-constrained

seclab 28 Jan 04, 2023
A scanpy extension to analyse single-cell TCR and BCR data.

Scirpy: A Scanpy extension for analyzing single-cell immune-cell receptor sequencing data Scirpy is a scalable python-toolkit to analyse T cell recept

ICBI 145 Jan 03, 2023
Discovering Dynamic Salient Regions with Spatio-Temporal Graph Neural Networks

Discovering Dynamic Salient Regions with Spatio-Temporal Graph Neural Networks This is the official code for DyReg model inroduced in Discovering Dyna

Bitdefender Machine Learning 11 Nov 08, 2022
TrTr: Visual Tracking with Transformer

TrTr: Visual Tracking with Transformer We propose a novel tracker network based on a powerful attention mechanism called Transformer encoder-decoder a

趙 漠居(Zhao, Moju) 66 Dec 27, 2022
Code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition"

SEW (Squeezed and Efficient Wav2vec) The repo contains the code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speec

ASAPP Research 67 Dec 01, 2022