The implement of papar "Enhanced Graph Learning for Collaborative Filtering via Mutual Information Maximization"

Overview

SIGIR2021-EGLN

The implement of paper "Enhanced Graph Learning for Collaborative Filtering via Mutual Information Maximization"

Neural graph based Collaborative Filtering (CF) models learn user and item embeddings based on the user-item bipartite graph structure, and have achieved state-of-the-art recommendation performance. In the ubiquitous implicit feedback based CF, users’ unobserved behaviors are treated as unlinked edges in the user-item bipartite graph. As users’ unobserved behaviors are mixed with dislikes and unknown positive preferences, the fixed graph structure input is missing with potential positive preference links. In this paper, we study how to better learn enhanced graph structure for CF. We argue that node embedding learning and graph structure learning can mutually enhance each other in CF, as updated node embeddings are learned from previous graph structure, and vice versa (i.e., newly updated graph structure are optimized based on current node embedding results). Some previous works provided approaches to refine the graph structure. However, most of these graph learning models relied on node features for modeling, which are not available in CF. Besides, nearly all optimization goals tried to compare the learned adaptive graph and the original graph from a local reconstruction perspective, whether the global properties of the adaptive graph structure are modeled in the learning process is still unknown. To this end, in this paper, we propose an enhanced graph learning network (EGLN ) approach for CF via mutual information maximization. The key idea of EGLN is two folds: First, we let the enhanced graph learning module and the node embedding module iteratively learn from each other without any feature input. Second, we design a local-global consistency optimization function to capture the global properties in the enhanced graph learning process. Finally, extensive experimental results on three real-world datasets clearly show the effectiveness of our proposed model.

Prerequisites

  • Tensorflow 1.15.0
  • Python 3.7.9

Usage

  • Dataset:
    Under the data folder(cd ./datasets)
  • Run model for amazon dataset:
    cd ./code/amazon_code python egln.py

Citation

If you find this useful for your research, please kindly cite the following paper:

@inproceedings{yang2021enhanced,
  title={Enhanced Graph Learning for Collaborative Filtering via Mutual Information Maximization},
  author={Yang, Yonghui and Wu, Le and Hong, Richang and Zhang, Kun and Wang, Meng},
  booktitle={Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval},
  pages={71--80},
  year={2021}
}

This work focus on graph structure learning via graph mutual infomax. If you are also interested in graph node attributes learning, you can refer to the following paper:

@inproceedings{wu2020joint,
  title={Joint item recommendation and attribute inference: An adaptive graph convolutional network approach},
  author={Wu, Le and Yang, Yonghui and Zhang, Kun and Hong, Richang and Fu, Yanjie and Wang, Meng},
  booktitle={Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval},
  pages={679--688},
  year={2020}
}

Author contact:

Email: [email protected]

Bringing Computer Vision and Flutter together , to build an awesome app !!

Bringing Computer Vision and Flutter together , to build an awesome app !! Explore the Directories Flutter · Machine Learning Table of Contents About

Padmanabha Banerjee 14 Apr 07, 2022
UDP++ (ECCVW 2020 Oral), (Winner of COCO 2020 Keypoint Challenge).

UDP-Pose This is the pytorch implementation for UDP++, which won the Fisrt place in COCO Keypoint Challenge at ECCV 2020 Workshop. Top-Down Results on

20 Jul 29, 2022
Deep ViT Features as Dense Visual Descriptors

dino-vit-features [paper] [project page] Official implementation of the paper "Deep ViT Features as Dense Visual Descriptors". We demonstrate the effe

Shir Amir 113 Dec 24, 2022
ACL'2021: LM-BFF: Better Few-shot Fine-tuning of Language Models

LM-BFF (Better Few-shot Fine-tuning of Language Models) This is the implementation of the paper Making Pre-trained Language Models Better Few-shot Lea

Princeton Natural Language Processing 607 Jan 07, 2023
PyTorch implementation for our paper Learning Character-Agnostic Motion for Motion Retargeting in 2D, SIGGRAPH 2019

Learning Character-Agnostic Motion for Motion Retargeting in 2D We provide PyTorch implementation for our paper Learning Character-Agnostic Motion for

Rundi Wu 367 Dec 22, 2022
PyTorch implementation of the paper Deep Networks from the Principle of Rate Reduction

Deep Networks from the Principle of Rate Reduction This repository is the official PyTorch implementation of the paper Deep Networks from the Principl

459 Dec 27, 2022
Codes and scripts for "Explainable Semantic Space by Grounding Languageto Vision with Cross-Modal Contrastive Learning"

Visually Grounded Bert Language Model This repository is the official implementation of Explainable Semantic Space by Grounding Language to Vision wit

17 Dec 17, 2022
Decorator for PyMC3

sampled Decorator for reusable models in PyMC3 Provides syntactic sugar for reusable models with PyMC3. This lets you separate creating a generative m

Colin 50 Oct 08, 2021
Python implementation of cover trees, near-drop-in replacement for scipy.spatial.kdtree

This is a Python implementation of cover trees, a data structure for finding nearest neighbors in a general metric space (e.g., a 3D box with periodic

Patrick Varilly 28 Nov 25, 2022
Tooling for the Common Objects In 3D dataset.

CO3D: Common Objects In 3D This repository contains a set of tools for working with the Common Objects in 3D (CO3D) dataset. Download the dataset The

Facebook Research 724 Jan 06, 2023
My implementation of Fully Convolutional Neural Networks in Keras

Keras-FCN This repository contains my implementation of Fully Convolutional Networks in Keras (Tensorflow backend). Currently, semantic segmentation c

The Duy Nguyen 15 Jan 13, 2020
[NeurIPS 2021] Galerkin Transformer: a linear attention without softmax

[NeurIPS 2021] Galerkin Transformer: linear attention without softmax Summary A non-numerical analyst oriented explanation on Toward Data Science abou

Shuhao Cao 159 Dec 20, 2022
Code of our paper "Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning"

CCOP Code of our paper Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning Requirement Install OpenSelfSup Install Detectron2

Chenhongyi Yang 21 Dec 13, 2022
Explainable Zero-Shot Topic Extraction

Zero-Shot Topic Extraction with Common-Sense Knowledge Graph This repository contains the code for reproducing the results reported in the paper "Expl

D2K Lab 56 Dec 14, 2022
The aim of the game, as in the original one, is to find a specific image from a group of different images of a person's face

GUESS WHO Main Links: [Github] [App] Related Links: [CLIP] [Celeba] The aim of the game, as in the original one, is to find a specific image from a gr

Arnau - DIMAI 3 Jan 04, 2022
MLOps will help you to understand how to build a Continuous Integration and Continuous Delivery pipeline for an ML/AI project.

page_type languages products description sample python azure azure-machine-learning-service azure-devops Code which demonstrates how to set up and ope

1 Nov 01, 2021
Pytorch implementation of Rosca, Mihaela, et al. "Variational Approaches for Auto-Encoding Generative Adversarial Networks."

alpha-GAN Unofficial pytorch implementation of Rosca, Mihaela, et al. "Variational Approaches for Auto-Encoding Generative Adversarial Networks." arXi

Victor Shepardson 78 Dec 08, 2022
Unofficial pytorch implementation for Self-critical Sequence Training for Image Captioning. and others.

An Image Captioning codebase This is a codebase for image captioning research. It supports: Self critical training from Self-critical Sequence Trainin

Ruotian(RT) Luo 906 Jan 03, 2023
Code for the Interspeech 2021 paper "AST: Audio Spectrogram Transformer".

AST: Audio Spectrogram Transformer Introduction Citing Getting Started ESC-50 Recipe Speechcommands Recipe AudioSet Recipe Pretrained Models Contact I

Yuan Gong 603 Jan 07, 2023
CSKG is a commonsense knowledge graph that combines seven popular sources into a consolidated representation

CSKG: The CommonSense Knowledge Graph CSKG is a commonsense knowledge graph that combines seven popular sources into a consolidated representation: AT

USC ISI I2 85 Dec 12, 2022