T‘rex Park is a Youzan sponsored project. Offering Chinese NLP and image models pretrained from E-commerce datasets

Overview

T'rex Park(霸王龙公园)

Trexpark项目由有赞数据智能团队开源,是国内首个基于电商大数据训练的开源NLP和图像项目。我们预期将逐步开放基于商品标题,评论,客服对话等NLP语聊,以及商品主图,品牌logo等进行预训练的NLP和图像模型。


为什么是霸王龙?

霸王龙

霸王龙是有赞的吉祥物。呃,准确的说这不是个吉祥物,而是有赞人自我鞭策的精神图腾。早期我们的网站经常崩溃,导致浏览器会显示一个霸王龙的图案,提示页面崩溃了。于是我们就把霸王龙作为我们的吉祥物,让大家时刻警惕故障和缺陷。


为什么要开源模型?

和平台电商不同,有赞是一家商家服务公司,我们的使命是帮助每一位重视产品和服务的商家成功。因此我们放弃了通过开放接口提供服务的方式,直接把底层能力开放出来,提供给需要的商家和中小型电商企业,帮助他们在有赞的数据沉淀基础上,快速构建自己的机器学习应用。


为什么要做领域预训练模型?

目前各个开源大模型往往基于通用语料训练,而通用语料的语言模型用于特定领域的机器学习任务,往往效果不佳,或者需要对预训练模型部分进行finetune。我们的实践发现,基于电商数据finetune以后的预训练模型,能更好的学习到领域知识,并且在多项任务中,无须额外训练,或者仅仅对模型的预测部分进行训练就可以达到很好的效果。

我们基于电商领域语料训练的预训练模型非常适合小样本的机器学习任务,用于解决中小电商企业和商家的fewshot难题。以商品标题分类为例,每个类目只需要100个样本,就能得到很好的分类效果,具体例子可以看这里

我们的模型已经在HuggingFace的model hub上发布,想要使用我们的模型,只需要几行代码

from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("youzanai/bert-product-title-chinese")
model = AutoModel.from_pretrained("youzanai/bert-product-title-chinese")

模型加载后,我们就可以执行简单的encoder任务了

batch = tokenizer(["青蒿精油手工皂", "超级飞侠乐迪太空车"])
outputs = model(**batch)
print(outputs.logits)

项目的src目录中有完整的代码和测试用的数据,可以直接运行浏览效果。


文档和帮助

详细的使用文档我们还在编写中,大家可以先参考src目录中的示例代码。为了让代码更容易理解,我们已经尽可能的对代码进行了精简。T'rex Park底层使用了HuggingFace的Transformer框架,关于Transformer的文档可以看这里

Guide to using pre-trained large language models of source code

Large Models of Source Code I occasionally train and publicly release large neural language models on programs, including PolyCoder. Here, I describe

Vincent Hellendoorn 947 Dec 28, 2022
Espial is an engine for automated organization and discovery of personal knowledge

Live Demo (currently not running, on it) Espial is an engine for automated organization and discovery in knowledge bases. It can be adapted to run wit

Uzay-G 159 Dec 30, 2022
Spooky Skelly For Python

_____ _ _____ _ _ _ | __| ___ ___ ___ | |_ _ _ | __|| |_ ___ | || | _ _ |__ || . || . || . || '

Kur0R1uka 1 Dec 23, 2021
source code for paper: WhiteningBERT: An Easy Unsupervised Sentence Embedding Approach.

WhiteningBERT Source code and data for paper WhiteningBERT: An Easy Unsupervised Sentence Embedding Approach. Preparation git clone https://github.com

49 Dec 17, 2022
Community and sentiment analysis based on tweets

The project has set itself the goal of analyzing the thoughts and interaction of Italian users through the social posts expressed through the Twitter platform on the day of the entry into force of th

3 Nov 17, 2022
A model library for exploring state-of-the-art deep learning topologies and techniques for optimizing Natural Language Processing neural networks

A Deep Learning NLP/NLU library by Intel® AI Lab Overview | Models | Installation | Examples | Documentation | Tutorials | Contributing NLP Architect

Intel Labs 2.9k Jan 02, 2023
Unofficial PyTorch implementation of Google AI's VoiceFilter system

VoiceFilter Note from Seung-won (2020.10.25) Hi everyone! It's Seung-won from MINDs Lab, Inc. It's been a long time since I've released this open-sour

MINDs Lab 881 Jan 03, 2023
Kerberoast with ACL abuse capabilities

targetedKerberoast targetedKerberoast is a Python script that can, like many others (e.g. GetUserSPNs.py), print "kerberoast" hashes for user accounts

Shutdown 213 Dec 22, 2022
An assignment on creating a minimalist neural network toolkit for CS11-747

minnn by Graham Neubig, Zhisong Zhang, and Divyansh Kaushik This is an exercise in developing a minimalist neural network toolkit for NLP, part of Car

Graham Neubig 63 Dec 29, 2022
A python wrapper around the ZPar parser for English.

NOTE This project is no longer under active development since there are now really nice pure Python parsers such as Stanza and Spacy. The repository w

ETS 49 Sep 12, 2022
뉴스 도메인 질의응답 시스템 (21-1학기 졸업 프로젝트)

뉴스 도메인 질의응답 시스템 본 프로젝트는 뉴스기사에 대한 질의응답 서비스 를 제공하기 위해서 진행한 프로젝트입니다. 약 3개월간 ( 21. 03 ~ 21. 05 ) 진행하였으며 Transformer 아키텍쳐 기반의 Encoder를 사용하여 한국어 질의응답 데이터셋으로

TaegyeongEo 4 Jul 08, 2022
Official PyTorch implementation of "Dual Path Learning for Domain Adaptation of Semantic Segmentation".

Dual Path Learning for Domain Adaptation of Semantic Segmentation Official PyTorch implementation of "Dual Path Learning for Domain Adaptation of Sema

27 Dec 22, 2022
skweak: A software toolkit for weak supervision applied to NLP tasks

Labelled data remains a scarce resource in many practical NLP scenarios. This is especially the case when working with resource-poor languages (or text domains), or when using task-specific labels wi

Norsk Regnesentral (Norwegian Computing Center) 850 Dec 28, 2022
ConvBERT-Prod

ConvBERT 目录 0. 仓库结构 1. 简介 2. 数据集和复现精度 3. 准备数据与环境 3.1 准备环境 3.2 准备数据 3.3 准备模型 4. 开始使用 4.1 模型训练 4.2 模型评估 4.3 模型预测 5. 模型推理部署 5.1 基于Inference的推理 5.2 基于Serv

yujun 7 Apr 08, 2022
Analyse japanese ebooks using MeCab to determine the difficulty level for japanese learners

japanese-ebook-analysis This aim of this project is to make analysing the contents of a japanese ebook easy and streamline the process for non-technic

Christoffer Aakre 14 Jul 23, 2022
This is the main repository of open-sourced speech technology by Huawei Noah's Ark Lab.

Speech-Backbones This is the main repository of open-sourced speech technology by Huawei Noah's Ark Lab. Grad-TTS Official implementation of the Grad-

HUAWEI Noah's Ark Lab 295 Jan 07, 2023
Transformers and related deep network architectures are summarized and implemented here.

Transformers: from NLP to CV This is a practical introduction to Transformers from Natural Language Processing (NLP) to Computer Vision (CV) Introduct

Ibrahim Sobh 138 Dec 27, 2022
Code for ACL 2020 paper "Rigid Formats Controlled Text Generation"

SongNet SongNet: SongCi + Song (Lyrics) + Sonnet + etc. @inproceedings{li-etal-2020-rigid, title = "Rigid Formats Controlled Text Generation",

Piji Li 212 Dec 17, 2022
A collection of Korean Text Datasets ready to use using Tensorflow-Datasets.

tfds-korean A collection of Korean Text Datasets ready to use using Tensorflow-Datasets. TensorFlow-Datasets를 이용한 한국어/한글 데이터셋 모음입니다. Dataset Catalog |

Jeong Ukjae 20 Jul 11, 2022
TensorFlow code and pre-trained models for BERT

BERT ***** New March 11th, 2020: Smaller BERT Models ***** This is a release of 24 smaller BERT models (English only, uncased, trained with WordPiece

Google Research 32.9k Jan 08, 2023