CZU-MHAD: A multimodal dataset for human action recognition utilizing a depth camera and 10 wearable inertial sensors

Overview

CZU-MHAD: A multimodal dataset for human action recognition utilizing a depth camera and 10 wearable inertial sensors

  In order to facilitate the research of multi-modal sensor fusion for human action recognition, this paper provides a multi-modal human action dataset using Kinect depth camera and multile wearable sensors, which is called Changzhou University multi-modal human action dataset (CZU-MHAD). Our dataset contains more wearable sensors, which aims to obtain the position data of human skeleton joints, as well as 3-axis acceleration and 3-axis angular velocity data of corresponding joints. Our dataset provides time synchronous depth video, skeleton joint position, 3-axis acceleration and 3-axis angular velocity data to describe a complete human action.

1. Sensors

  The CZU-MHAD uses 1 Microsoft Kinect V2 and 10 wearable sensors MPU9250. These two kinds of sensors are widely used, which have the characteristics of low power consumption, low cost and simple operation. In addition, it does not require too much computing power to process the data collected by the two kind sensors in real time.

1.1 Kinect v2

  The above picture is the Microsoft Kinect V2, which can collect both color and depth images at a sampling frequency of 30 frames per second. Kinect SDK is a software package provided by Microsoft, which can be used to track 25 skeleton joint points and their 3D spatial positions. You can download the Kinect SDK in https://www.microsoft.com/en-us/download/details.aspx?id=44561.

  The above image shows 25 skeleton joint points of the human body that Kinect V2 can track.

1.2 MPU9250

  The MPU9250 can capture 3-axis acceleration, 3-axis angular velocity and 3-axis magnetic intensity.

  • The measurement range of MPU9250:
    • the measurement range of accelerometer is ±16g;
    • the measurement range of angular velocity of the gyroscope is ±2000 degrees/second.

  CZU-MHAD uses Raspberry PI to interact with MPU9250 through the integrated circuit bus (IIC) interface, realizing the functions of reading, saving and uploading MPU9250 sensor data to the server.The connection between Raspberry PI and MPU9250 is shown in picture.

  You can visit https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up to learn more about Raspberry PI.

2. Data Acquisition System Architecture

  This section introduces the data acquisition system of CZU-MHAD dataset. CZU-MHAD uses Kinect V2 sensor to collect depth image and joint position data, and uses MPU9250 sensor to collect 3-axis acceleration data and 3-axis angular velocity data. In order to collect the 3-axis acceleration data and the 3-axis angular velocity data of the whole body, a motion data acquisition system including 10 MPU9250 sensors is built-in this paper. The sampling system architecture is shown in following picture.

  The MPU9250 sensor is controlled by Raspberry PI, Kinect V2 is controlled by a notebook computer, and time synchronization with a NTP server is carried out every time data is collected. After considering the sampling scheme of MHAD and UTD-MHAD, the position of wearable sensors is determined as shown in the following picture.

  The points marked in red in the figure are the positions of inertial sensors, the left in the figure is the left side of the human body, and the right in the figure is the right side of the human body.

3. Information for "CZU-MHAD" dataset.

  The CZU-MHAD dataset contains 22 actions performed by 5 subjects (5 males). Each subject repeated each action >8 times. The CZU-MHAD dataset contains a total of >880 samples. The 22 actions performed are listed in Table. It can be seen that CZU-MHAD includes common gestures (such as Draw fork, Draw circle),daily activities (such as Sur Place, Clap, Bend down), and training actions (such as Left body turning movement, Left lateral movement).

Describe different actions in English:

ID Action name ID Action name ID Action name ID Action name
1 Right high wave 7 Draw fork with right hand 13 Right foot kick side 19 Left body turning movement
2 Left high wave 8 Draw fork with left hand 14 Left foot kick side 20 Right body turning movement
3 Right horizontal wave 9 Draw circle with right hand 15 Clap 21 Left lateral movement
4 Left horizontal wave 10 Draw circle with left hand 16 Bend down 22 Right lateral movement
5 Hammer with right hand 11 Right foot kick foward 17 Wave up and down
6 Grasp with right hand 12 Left foot kick foward 18 Sur Place

Describe different actions in Chinese::

ID Action name ID Action name ID Action name ID Action name
1 右高挥手 7 右手画× 13 右脚侧踢 19 左体转
2 左高挥手 8 左手画× 14 左脚侧踢 20 右体转
3 右水平挥手 9 右手画○ 15 拍手 21 左体侧
4 左水平挥手 10 左手画○ 16 弯腰 22 右体侧
5 锤(右手) 11 右脚前踢 17 上下挥手
6 抓(右手) 12 左脚前踢 18 原地踏步

4. How to download the dataset

   We offer one way to download our CZU-MHAD dataset:

  1. BaiduDisk(百度网盘)

    (Link) 链接:https://pan.baidu.com/s/1SBy0D2f1ZoX_mDyd3YEp2Q
    (Code) 提取码:qsq1

  In the CZU-MHAD, you will see three subfolders:

  • depth_mat

       The depth_mat contains the depth images captured by Kinect V2. In this folder, each file represents an action sample. Each file is named by the subject's name, the category label of the action and the time of each action of each subject. Take cyy_a1_t1.mat as an example, cyy is the subject's name, a1 is the name of the action, t1 stands the first time to perform this action. How to read data is shown in our sample code.

  • sensors_mat

       The sensors_mat contains the data of 3-axis acceleration and 3-axis angular velocity captured by MPU9250. In this folder, each file represents an action sample. Each file is named by the subject's name, the category label of the action and the time of each action of each subject. Take cyy_a1_t1.mat as an example, cyy is the subject's name, a1 is the name of the action, t1 stands the first time to perform this action. How to read data is shown in our sample code.

  • skeleton_mat

       The skeleton_mat contains the position data of skeleton joint points captured by Kinect V2. In this folder, each file represents an action sample. Each file is named by the subject's name, the category label of the action and the time of each action of each subject. Take cyy_a1_t1.mat as an example, cyy is the subject's name, a1 is the name of the action, t1 stands the first time to perform this action. How to read data is shown in our sample code.

5. Sample codes

  1. BaiduDisk(百度网盘)

    (Link) 链接:https://pan.baidu.com/s/1bWq7ypygjTffkor1GAExMQ

    (Code) 提取码:limf

6. Citation

To use our dataset, please refer to the following paper:

  • Mo Yujian, Hou Zhenjie, Chang Xingzhi, Liang Jiuzhen, Chen Chen, Huan Juan. Structural feature representation and fusion of behavior recognition oriented human spatial cooperative motion[J]. Journal of Beijing University of Aeronautics and Astronautics,2019,(12):2495-2505.

7. Mailing List

  If you are interested to recieve news, updates, and future events about this dataset, please email me.

#. Thanks(致谢)

  1. Cui Yaoyao(崔瑶瑶)
  2. Chao Xin(巢新)
  3. Qin Yinhua(秦银华)
  4. Zhang Yuheng(张宇恒)
  5. Mo Yujian(莫宇剑)

#. Gao Liang(高亮)

#. Shi Yuhang(石宇航)

  The subjects marked with '#' also participated in our data collection process. However, due to the unstable power supply and abnormal heat dissipation of Raspberry PI, their behavior data is abnormal. Therefore, we do not provide their data.

You might also like...
Official PyTorch implementation of
Official PyTorch implementation of "IntegralAction: Pose-driven Feature Integration for Robust Human Action Recognition in Videos", CVPRW 2021

IntegralAction: Pose-driven Feature Integration for Robust Human Action Recognition in Videos Introduction This repo is official PyTorch implementatio

Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in ONNX
Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in ONNX

ONNX msg_chn_wacv20 depth completion Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20 model in

Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in Tensorflow Lite.
Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in Tensorflow Lite.

TFLite-msg_chn_wacv20-depth-completion Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model

Info and sample codes for "NTU RGB+D Action Recognition Dataset"

"NTU RGB+D" Action Recognition Dataset "NTU RGB+D 120" Action Recognition Dataset "NTU RGB+D" is a large-scale dataset for human action recognition. I

LVI-SAM: Tightly-coupled Lidar-Visual-Inertial Odometry via Smoothing and Mapping
LVI-SAM: Tightly-coupled Lidar-Visual-Inertial Odometry via Smoothing and Mapping

LVI-SAM This repository contains code for a lidar-visual-inertial odometry and mapping system, which combines the advantages of LIO-SAM and Vins-Mono

A real-time motion capture system that estimates poses and global translations using only 6 inertial measurement units
A real-time motion capture system that estimates poses and global translations using only 6 inertial measurement units

TransPose Code for our SIGGRAPH 2021 paper "TransPose: Real-time 3D Human Translation and Pose Estimation with Six Inertial Sensors". This repository

 COVINS -- A Framework for Collaborative Visual-Inertial SLAM and Multi-Agent 3D Mapping
COVINS -- A Framework for Collaborative Visual-Inertial SLAM and Multi-Agent 3D Mapping

COVINS -- A Framework for Collaborative Visual-Inertial SLAM and Multi-Agent 3D Mapping Version 1.0 COVINS is an accurate, scalable, and versatile vis

Monocular Depth Estimation - Weighted-average prediction from multiple pre-trained depth estimation models
Monocular Depth Estimation - Weighted-average prediction from multiple pre-trained depth estimation models

merged_depth runs (1) AdaBins, (2) DiverseDepth, (3) MiDaS, (4) SGDepth, and (5) Monodepth2, and calculates a weighted-average per-pixel absolute dept

The implemention of Video Depth Estimation by Fusing Flow-to-Depth Proposals

Flow-to-depth (FDNet) video-depth-estimation This is the implementation of paper Video Depth Estimation by Fusing Flow-to-Depth Proposals Jiaxin Xie,

Releases(skeleton)
Owner
yujmo
帅气,阳光,灿烂,美丽,大方
yujmo
RL and distillation in CARLA using a factorized world model

World on Rails Learning to drive from a world on rails Dian Chen, Vladlen Koltun, Philipp Krähenbühl, arXiv techical report (arXiv 2105.00636) This re

Dian Chen 131 Dec 16, 2022
Self-supervised learning optimally robust representations for domain generalization.

OptDom: Learning Optimal Representations for Domain Generalization This repository contains the official implementation for Optimal Representations fo

Yangjun Ruan 18 Aug 25, 2022
A PyTorch Implementation of the Luna: Linear Unified Nested Attention

Unofficial PyTorch implementation of Luna: Linear Unified Nested Attention The quadratic computational and memory complexities of the Transformer’s at

Soohwan Kim 32 Nov 07, 2022
This repository contains FEDOT - an open-source framework for automated modeling and machine learning (AutoML)

package tests docs license stats support This repository contains FEDOT - an open-source framework for automated modeling and machine learning (AutoML

National Center for Cognitive Research of ITMO University 482 Dec 26, 2022
Code for the CIKM 2019 paper "DSANet: Dual Self-Attention Network for Multivariate Time Series Forecasting".

Dual Self-Attention Network for Multivariate Time Series Forecasting 20.10.26 Update: Due to the difficulty of installation and code maintenance cause

Kyon Huang 223 Dec 16, 2022
Tooling for the Common Objects In 3D dataset.

CO3D: Common Objects In 3D This repository contains a set of tools for working with the Common Objects in 3D (CO3D) dataset. Download the dataset The

Facebook Research 724 Jan 06, 2023
Finetuner allows one to tune the weights of any deep neural network for better embeddings on search tasks

Finetuner allows one to tune the weights of any deep neural network for better embeddings on search tasks

Jina AI 794 Dec 31, 2022
Neural Network Libraries

Neural Network Libraries Neural Network Libraries is a deep learning framework that is intended to be used for research, development and production. W

Sony 2.6k Dec 30, 2022
A short and easy PyTorch implementation of E(n) Equivariant Graph Neural Networks

Simple implementation of Equivariant GNN A short implementation of E(n) Equivariant Graph Neural Networks for HOMO energy prediction. Just 50 lines of

Arsenii Senya Ashukha 97 Dec 23, 2022
This implements one of result networks from Large-scale evolution of image classifiers

Exotic structured image classifier This implements one of result networks from Large-scale evolution of image classifiers by Esteban Real, et. al. Req

54 Nov 25, 2022
Code for "Neural 3D Scene Reconstruction with the Manhattan-world Assumption" CVPR 2022 Oral

News 05/10/2022 To make the comparison on ScanNet easier, we provide all quantitative and qualitative results of baselines here, including COLMAP, COL

ZJU3DV 365 Dec 30, 2022
Per-Pixel Classification is Not All You Need for Semantic Segmentation

MaskFormer: Per-Pixel Classification is Not All You Need for Semantic Segmentation Bowen Cheng, Alexander G. Schwing, Alexander Kirillov [arXiv] [Proj

Facebook Research 1k Jan 08, 2023
YouRefIt: Embodied Reference Understanding with Language and Gesture

YouRefIt: Embodied Reference Understanding with Language and Gesture YouRefIt: Embodied Reference Understanding with Language and Gesture by Yixin Che

16 Jul 11, 2022
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 29, 2022
Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Kento Nishi 22 Jul 07, 2022
Reinforcement learning library in JAX.

Reinforcement learning library in JAX.

Yicheng Luo 96 Oct 30, 2022
An ML & Correlation platform for transforming disparate data points of interest into usable intelligence.

SSIDprobeCollector An ML & Correlation platform for transforming disparate data points of interest into usable intelligence. At a High level the platf

Bill Reyor 1 Jan 30, 2022
Regularized Frank-Wolfe for Dense CRFs: Generalizing Mean Field and Beyond

CRF - Conditional Random Fields A library for dense conditional random fields (CRFs). This is the official accompanying code for the paper Regularized

Đ.Khuê Lê-Huu 21 Nov 26, 2022
Fast, accurate and reliable software for algebraic CT reconstruction

KCT CBCT Fast, accurate and reliable software for algebraic CT reconstruction. This set of software tools includes OpenCL implementation of modern CT

Vojtěch Kulvait 4 Dec 14, 2022
An example showing how to use jax to train resnet50 on multi-node multi-GPU

jax-multi-gpu-resnet50-example This repo shows how to use jax for multi-node multi-GPU training. The example is adapted from the resnet50 example in d

Yangzihao Wang 20 Jul 04, 2022