Anomaly Detection Based on Hierarchical Clustering of Mobile Robot Data

Overview

Anomaly-Detection-Based-on-Hierarchical-Clustering-of-Mobile-Robot-Data

1. Introduction

This report is present an approach to detect anomaly of mobile robot's current and vibration data. The main idea is examine all data, separate them into two cluster as normal and anomaly and then using these clustering results figure out the merged anomaly score for each data sample. For this purpose, both of current and vibration data are cluster by using Hierarchical clustering algorithm. Before the clustering there are several preprocessing step that are windowing, feature extraction, dynamic time warping and min-max normalization.

You can access our paper here.

2. Interested Data

There are two different types of data that are coming from mobile robots sensors as current and vibration data. Both of them are produce at same frequency but they have different characteristic. Although the current data is numeric data, the vibration data is time series data. So, current data has a single value per each data packet but vibration data has much more value per each data packet.

Current Data Sample Vibration Data Sample

3. Proposed Method

There are two different method are proposed to detect anomaly on data. They have common step as windowing. And also they have some other different steps like feature extraction, normalization and dynamic time warping. These all are about preprocessing steps. After the preprocessing steps data is clustering into two subset by using hierarchical clustering as normal and anomaly. The anomaly scores of each data sample are produces as a result of clustering. And then, the results of two method are collect and anomaly scores are merge for each same data sample. While merging anomaly score, the mean of them are take. Given two method is perform separately using both current and vibration data. Proposed method is shown as below.

Rest of here, method 1 is represent a method which is use feature extraction and method 2 is also represent a method which is use DTW. Remember that both of these methods have also common steps.

3.1 Preprocessing Steps

A. Windowing
In this process, the data are parsed into subsets named as window with same size. For the extract of features of data, the data must be a time series data. In this way, the data are converted time series data. In this project, window size is 3. This step is implement for both two methods. Sample windowing process output is shown as below:

B. Feature Extraction
The features are extracted separately for each window. There are nine different feature as given below:

C. Dynamic Time Warping
In method 2, DTW is used for calculate similarity instead of Euclidean distance. After the windowing process, the data was converted time series data. So now, it is possible to use DTW on data.

Feature Extraction Dynamic Time Warping

D. Min-Max Normalization
Min-max normalization is one of the most common ways to normalize data. For every feature, the minimum value of that feature gets transformed into a 0, the maximum value gets transformed into a 1, and every other value gets transformed into a decimal between 0 and 1. Min-max normalization is executed on features that extracted from window. This step is implement only for method 1.

3.2 Hierarchical Clustering

This clustering technique is divided into two types as agglomerative and divisive. In this method, agglomerative approach is used. At this step, preprocessing steps is already done for method 1 and method 2 and the windows are ready to clustering. These windows are put into hierarchical algorithm to find clusters. As a result, the clusters which windows are belong to are found. They are used for calculate the anomaly score for whole data. This step is implemented for both two methods. And, the dendrogram which is represent the clustering result is produce.

3.3 Find Anomaly Score

The anomaly score is calculated separately from result of hierarchical clustering of both method 1 and method 2. The hierarchical clustering algorithm is produce clusters for each window. With use these clusters, the anomaly score is calculated for each cluster as given below (C: interested cluster, #All window: number of all window, #C window: number of window that belong to cluster C): C_anomaly=(#All Window - #C Window)/(#All Window)
< After the calculation of anomaly score for each method, the merged anomaly score is generate from mean of them. The formula is as follows for generate merged score: C_(merged anomaly score)=(C_(anomaly of method1)+ C_(anomaly of method2))/2
The anomaly score which is higher mean it is highly possible to be anomaly.

4. Experiments

An anomaly score is located right-top of figure. Different clusters are shown with different color.

Current Data Results

Feature Extracted Clustering Anomaly Score DTW Clustering Anoamly Score
Merged Anomaly Score

Vibration Data Results

Feature Extracted Clustering Anomaly Score DTW Clustering Anoamly Score
Merged Anomaly Score

Owner
Zekeriyya Demirci
Research Assistant at Eskişehir Osmangazi University , Contributor of VALU3S
Zekeriyya Demirci
A set of tools for converting a darknet dataset to COCO format working with YOLOX

darknet格式数据→COCO darknet训练数据目录结构(详情参见dataset/darknet): darknet ├── class.names ├── gen_config.data ├── gen_train.txt ├── gen_valid.txt └── images

RapidAI-NG 148 Jan 03, 2023
TCNN Temporal convolutional neural network for real-time speech enhancement in the time domain

TCNN Pandey A, Wang D L. TCNN: Temporal convolutional neural network for real-time speech enhancement in the time domain[C]//ICASSP 2019-2019 IEEE Int

凌逆战 16 Dec 30, 2022
BLEURT is a metric for Natural Language Generation based on transfer learning.

BLEURT: a Transfer Learning-Based Metric for Natural Language Generation BLEURT is an evaluation metric for Natural Language Generation. It takes a pa

Google Research 492 Jan 05, 2023
Dungeons and Dragons randomized content generator

Component based Dungeons and Dragons generator Supports Entity/Monster Generation NPC Generation Weapon Generation Encounter Generation Environment Ge

Zac 3 Dec 04, 2021
Code for NeurIPS 2021 paper: Invariant Causal Imitation Learning for Generalizable Policies

Invariant Causal Imitation Learning for Generalizable Policies Ioana Bica, Daniel Jarrett, Mihaela van der Schaar Neural Information Processing System

Ioana Bica 17 Dec 01, 2022
Official repository for Fourier model that can generate periodic signals

Conditional Generation of Periodic Signals with Fourier-Based Decoder Jiyoung Lee, Wonjae Kim, Daehoon Gwak, Edward Choi This repository provides offi

8 May 25, 2022
Use AI to generate a optimized stock portfolio

Use AI, Modern Portfolio Theory, and Monte Carlo simulation's to generate a optimized stock portfolio that minimizes risk while maximizing returns. Ho

Greg James 30 Dec 22, 2022
Road Crack Detection Using Deep Learning Methods

Road-Crack-Detection-Using-Deep-Learning-Methods This is my Diploma Thesis ¨Road Crack Detection Using Deep Learning Methods¨ under the supervision of

Aggelos Katsaliros 3 May 03, 2022
Pyramid addon for OpenAPI3 validation of requests and responses.

Validate Pyramid views against an OpenAPI 3.0 document Peace of Mind The reason this package exists is to give you peace of mind when providing a REST

Pylons Project 79 Dec 30, 2022
Doing the asl sign language classification on static images using graph neural networks.

SignLangGNN When GNNs 💜 MediaPipe. This is a starter project where I tried to implement some traditional image classification problem i.e. the ASL si

10 Nov 09, 2022
ByteTrack with ReID module following the paradigm of FairMOT, tracking strategy is borrowed from FairMOT/JDE.

ByteTrack_ReID ByteTrack is the SOTA tracker in MOT benchmarks with strong detector YOLOX and a simple association strategy only based on motion infor

Han GuangXin 46 Dec 29, 2022
A Pytorch loader for MVTecAD dataset.

MVTecAD A Pytorch loader for MVTecAD dataset. It strictly follows the code style of common Pytorch datasets, such as torchvision.datasets.CIFAR10. The

Jiyuan 1 Dec 27, 2021
[ICLR 2021] Rank the Episodes: A Simple Approach for Exploration in Procedurally-Generated Environments.

[ICLR 2021] RAPID: A Simple Approach for Exploration in Reinforcement Learning This is the Tensorflow implementation of ICLR 2021 paper Rank the Episo

Daochen Zha 48 Nov 21, 2022
OpenVINO黑客松比赛项目

Window_Guard OpenVINO黑客松比赛项目 英文名称:Window_Guard 中文名称:窗口卫士 硬件 树莓派4B 8G版本 一个磁石开关 USB摄像头(MP4视频文件也可以) 软件(库) OpenVINO RPi 使用方法 本项目使用的OPenVINO是是2021.3版本,并使用了

Tango 6 Jul 04, 2021
LETR: Line Segment Detection Using Transformers without Edges

LETR: Line Segment Detection Using Transformers without Edges Introduction This repository contains the official code and pretrained models for Line S

mlpc-ucsd 157 Jan 06, 2023
Pytorch implementation of Implicit Behavior Cloning.

Implicit Behavior Cloning - PyTorch (wip) Pytorch implementation of Implicit Behavior Cloning. Install conda create -n ibc python=3.8 pip install -r r

Kevin Zakka 49 Dec 25, 2022
Official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

IterMVS official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo' Introduction IterMVS is a novel lear

Fangjinhua Wang 127 Jan 04, 2023
an implementation of Revisiting Adaptive Convolutions for Video Frame Interpolation using PyTorch

revisiting-sepconv This is a reference implementation of Revisiting Adaptive Convolutions for Video Frame Interpolation [1] using PyTorch. Given two f

Simon Niklaus 59 Dec 22, 2022
Aggragrating Nested Transformer Official Jax Implementation

NesT is a simple method, which aggragrates nested local transformers on image blocks. The idea makes vision transformers attain better accuracy, data efficiency, and convergence on the ImageNet bench

Google Research 169 Dec 20, 2022