PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021

Overview

Neural Scene Flow Fields

PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021

[Project Website] [Paper] [Video]

Dependency

The code is tested with Python3, Pytorch >= 1.6 and CUDA >= 10.2, the dependencies includes

  • configargparse
  • matplotlib
  • opencv
  • scikit-image
  • scipy
  • cupy
  • imageio.
  • tqdm

Video preprocessing

  1. Download nerf_data.zip from link, an example input video with SfM camera poses and intrinsics estimated from COLMAP (Note you need to use COLMAP "colmap image_undistorter" command to undistort input images to get "dense" folder as shown in the example, this dense folder should include "images" and "sparse" folders).

  2. Download single view depth prediction model "model.pt" from link, and put it on the folder "nsff_scripts".

  3. Run the following commands to generate required inputs for training/inference:

    # Usage
    cd nsff_scripts
    # create camera intrinsics/extrinsic format for NSFF, same as original NeRF where it uses imgs2poses.py script from the LLFF code: https://github.com/Fyusion/LLFF/blob/master/imgs2poses.py
    python save_poses_nerf.py --data_path "/home/xxx/Neural-Scene-Flow-Fields/kid-running/dense/"
    # Resize input images and run single view model
    python run_midas.py --data_path "/home/xxx/Neural-Scene-Flow-Fields/kid-running/dense/" --input_w 640 --input_h 360 --resize_height 288
    # Run optical flow model (for easy setup and Pytorch version consistency, we use RAFT as backbond optical flow model, but should be easy to change to other models such as PWC-Net or FlowNet2.0)
    ./download_models.sh
    python run_flows_video.py --model models/raft-things.pth --data_path /home/xxx/Neural-Scene-Flow-Fields/kid-running/dense/ --epi_threhold 1.0 --input_flow_w 768 --input_semantic_w 1024 --input_semantic_h 576

Rendering from an example pretrained model

  1. Download pretraind model "kid-running_ndc_5f_sv_of_sm_unify3_F00-30.zip" from link. Unzipping and putting it in the folder "nsff_exp/logs/kid-running_ndc_5f_sv_of_sm_unify3_F00-30/360000.tar".

Set datadir in config/config_kid-running.txt to the root directory of input video. Then go to directory "nsff_exp":

   cd nsff_exp
  1. Rendering of fixed time, viewpoint interpolation
   python run_nerf.py --config configs/config_kid-running.txt --render_bt --target_idx 10

By running the example command, you should get the following result: Alt Text

  1. Rendering of fixed viewpoint, time interpolation
   python run_nerf.py --config configs/config_kid-running.txt --render_lockcam_slowmo --target_idx 8

By running the example command, you should get the following result: Alt Text

  1. Rendering of space-time interpolation
   python run_nerf.py --config configs/config_kid-running.txt --render_slowmo_bt  --target_idx 10

By running the example command, you should get the following result: Alt Text

Training

  1. In configs/config_kid-running.txt, modifying expname to any name you like (different from the original one), and running the following command to train the model:
    python run_nerf.py --config configs/config_kid-running.txt

The per-scene training takes ~2 days using 2 Nvidia V100 GPUs.

  1. Several parameters in config files you might need to know for training a good model
  • N_samples: in order to render images with higher resolution, you have to increase number sampled points
  • start_frame, end_frame: indicate training frame range. The default model usually works for video of 1~2s. Training on longer frames can cause oversmooth rendering. To mitigate the effect, you can increase the capacity of the network by increasing netwidth (but it can drastically increase training time and memory usage).
  • decay_iteration: number of iteartion in initialization stage. Data-driven losses will decay every 1000*decay_iteration steps. It's usually good to match decay_iteration to the number of training frames.
  • no_ndc: our current implementation only supports reconstruction in NDC space, meaning it only works for forward-facing scene like original NeRF. But it should be not hard to adapt to euclidean space.
  • use_motion_mask, num_extra_sample: whether to use estimated coarse motion segmentation mask to perform hard-mining sampling during initialization stage, and how many extra samples during initialization stage.
  • w_depth, w_optical_flow: weight of losses for single-view depth and geometry consistency priors described in the paper
  • w_cycle: weights of scene flow cycle consistency loss
  • w_sm: weight of scene flow smoothness loss
  • w_prob_reg: weight of disocculusion weight regularization

Evaluation on the Dynamic Scene Dataset

  1. Download Dynamic Scene dataset "dynamic_scene_data_full.zip" from link

  2. Download pretrained model "dynamic_scene_pretrained_models.zip" from link, unzip and put them in the folder "nsff_exp/logs/"

  3. Run the following command for each scene to get quantitative results reported in the paper:

   # Usage: configs/config_xxx.txt indicates each scene name such as config_balloon1-2.txt in nsff/configs
   python evaluation.py --config configs/config_xxx.txt
  • Note: you have to use modified LPIPS implementation included in this branch in order to measure LIPIS error for dynamic region only as described in the paper.

Acknowledgment

The code is based on implementation of several prior work:

License

This repository is released under the MIT license.

Citation

If you find our code/models useful, please consider citing our paper:

@article{li2020neural,
  title={Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes},
  author={Li, Zhengqi and Niklaus, Simon and Snavely, Noah and Wang, Oliver},
  journal={arXiv preprint arXiv:2011.13084},
  year={2020}
}
Owner
Zhengqi Li
CS Ph.D. student at Cornell University/Cornell Tech
Zhengqi Li
FedScale: Benchmarking Model and System Performance of Federated Learning

FedScale: Benchmarking Model and System Performance of Federated Learning (Paper) This repository contains scripts and instructions of building FedSca

268 Jan 01, 2023
City-seeds - A random generator of cultural characteristics intended to spark ideas and help draw threads

City Seeds This is a random generator of cultural characteristics intended to sp

Aydin O'Leary 2 Mar 12, 2022
Python and C++ implementation of "MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation". Accepted at LXCV @ CVPR 2021.

MarkerPose: Robust real-time planar target tracking for accurate stereo pose estimation This is a PyTorch and LibTorch implementation of MarkerPose: a

Jhacson Meza 47 Nov 18, 2022
PyTorch implementation of ARM-Net: Adaptive Relation Modeling Network for Structured Data.

A ready-to-use framework of latest models for structured (tabular) data learning with PyTorch. Applications include recommendation, CRT prediction, healthcare analytics, and etc.

48 Nov 30, 2022
Pyramid R-CNN: Towards Better Performance and Adaptability for 3D Object Detection

Pyramid R-CNN: Towards Better Performance and Adaptability for 3D Object Detection

61 Jan 07, 2023
计算机视觉中用到的注意力模块和其他即插即用模块PyTorch Implementation Collection of Attention Module and Plug&Play Module

PyTorch实现多种计算机视觉中网络设计中用到的Attention机制,还收集了一些即插即用模块。由于能力有限精力有限,可能很多模块并没有包括进来,有任何的建议或者改进,可以提交issue或者进行PR。

PJDong 599 Dec 23, 2022
Official PyTorch implementation of Segmenter: Transformer for Semantic Segmentation

Segmenter: Transformer for Semantic Segmentation Segmenter: Transformer for Semantic Segmentation by Robin Strudel*, Ricardo Garcia*, Ivan Laptev and

594 Jan 06, 2023
PyJokes - Joking around with Python library pyjokes

Hi, it's Muhaimin again 👋 This is something unorthodox but cool. Don't forget t

Muhaimin A. Salay Kanton 1 Feb 02, 2022
Image data augmentation scheduler for albumentations transforms

albu_scheduler Scheduler for albumentations transforms based on PyTorch schedulers interface Usage TransformMultiStepScheduler import albumentations a

19 Aug 04, 2021
ETMO: Evolutionary Transfer Multiobjective Optimization

ETMO: Evolutionary Transfer Multiobjective Optimization To promote the research on ETMO, benchmark problems are of great importance to ETMO algorithm

Songbai Liu 0 Mar 16, 2021
Styled text-to-drawing synthesis method. Featured at the 2021 NeurIPS Workshop on Machine Learning for Creativity and Design

Styled text-to-drawing synthesis method. Featured at the 2021 NeurIPS Workshop on Machine Learning for Creativity and Design

Peter Schaldenbrand 247 Dec 23, 2022
AFLFast (extends AFL with Power Schedules)

AFLFast Power schedules implemented by Marcel Böhme [email protected]

Marcel Böhme 380 Jan 03, 2023
A GridMixup augmentation, inspired by GridMask and CutMix

GridMixup A GridMixup augmentation, inspired by GridMask and CutMix Easy install pip install git+https://github.com/IlyaDobrynin/GridMixup.git Overvie

IlyaDo 42 Dec 28, 2022
Official implementation for the paper: Generating Smooth Pose Sequences for Diverse Human Motion Prediction

Generating Smooth Pose Sequences for Diverse Human Motion Prediction This is official implementation for the paper Generating Smooth Pose Sequences fo

Wei Mao 28 Dec 10, 2022
Simple and Robust Loss Design for Multi-Label Learning with Missing Labels

Simple and Robust Loss Design for Multi-Label Learning with Missing Labels Official PyTorch Implementation of the paper Simple and Robust Loss Design

Xinyu Huang 28 Oct 27, 2022
Code repo for EMNLP21 paper "Zero-Shot Information Extraction as a Unified Text-to-Triple Translation"

Zero-Shot Information Extraction as a Unified Text-to-Triple Translation Source code repo for paper Zero-Shot Information Extraction as a Unified Text

cgraywang 88 Dec 31, 2022
Hunt down social media accounts by username across social networks

Hunt down social media accounts by username across social networks Installation | Usage | Docker Notes | Contributing Installation # clone the repo $

1 Dec 14, 2021
code for `Look Closer to Segment Better: Boundary Patch Refinement for Instance Segmentation`

Look Closer to Segment Better: Boundary Patch Refinement for Instance Segmentation (CVPR 2021) Introduction PBR is a conceptually simple yet effective

H.Chen 143 Jan 05, 2023
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 | 한국어 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrai

Hugging Face 77.4k Jan 05, 2023
A tool for calculating distortion parameters in coordination complexes.

OctaDist Octahedral distortion calculator: A tool for calculating distortion parameters in coordination complexes. https://octadist.github.io/ Registe

OctaDist 12 Oct 04, 2022