Off-policy continuous control in PyTorch, with RDPG, RTD3 & RSAC

Overview

offpcc_logo

arXiv technical report soon available.

we are updating the readme to be as comprehensive as possible

Please ask any questions in Issues, thanks.

Introduction

This PyTorch repo implements off-policy RL algorithms for continuous control, including:

  • Standard algorithms: DDPG, TD3, SAC
  • Image-based algorithm: ConvolutionalSAC
  • Recurrent algorithms: RecurrentDPG, RecurrentTD3, RecurrentSAC, RecurrentSACSharing (see report)

where recurrent algorithms are generally not available in other repos.

Structure of codebase

Here, we talk about the organization of this code. In particular, we will talk about

  • Folder: where are certain files located?
  • Classes: how are classes designed to interact with each other?
  • Training/evaluation loop: how environment interaction, learning and evaluation alternate?

A basic understanding of these will make other details easy to understand from code itself.

Folders

  • file
    • containing plots reproducing stable-baselines3; you don’t need to touch this
  • offpcc (the good stuff; you will be using this)
    • algorithms (where DDPG, TD3 and SAC are implemented)
    • algorithms_recurrent (where RDPG, RTD3 and RSAC are implemented)
    • basics (abstract classes, stuff shared by algorithms or algorithms_recurrent, code for training)
    • basics_sb3 (you don’t need to touch this)
    • configs (gin configs)
    • domains (all custom domains are stored within and registered properly)
  • pics_for_readme
    • random pics; you don’t need to touch this
  • temp
    • potentially outdated stuff; you don’t need to touch this

Relationships between classes

There are three core classes in this repo:

  • Any environment written using OpenAI’s API would have:
    • reset method outputs the current state
    • step method takes in an action, outputs (reward, next state, done, info)
  • OffPolicyRLAlgorithm and RecurrentOffPolicyRLAlgorithm are the base class for all algorithms listed in introduction. You should think about them as neural network (e.g., actors, critics, CNNs, RNNs) wrappers that are augmented with methods to help these networks interact with other stuff:
    • act method takes in state from env, outputs action back to env
    • update_networks method takes in batch from buffer
  • The replay buffers ReplayBuffer and RecurrentReplayBuffer are built to interact with the environment and the algorithm classes
    • push method takes in a transition from env
    • sample method outputs a batch for algorithm’s update_networks method

Their relationships are best illustrated by a diagram:

offpcc_steps

Structure of training/evaluation loop

In this repo, we follow the training/evaluation loop style in spinning-up (this is essentially the script: basics/run_fns and the function train). It follows this basic structure, with details added for tracking stats and etc:

state = env.reset()
for t range(total_steps):  # e.g., 1 million
    # environment interaction
    if t >= update_after:
        action = algorithm.act(state)
    else:
        action = env.action_space.sample()
    next_state, reward, done, info = env.step(action)
   	# learning
    if t >= update_after and (t + 1) % update_every == 0:
        for j in range(update_every):
            batch = buffer.sample()
            algorithm.update_networks(batch)
    # evaluation
    if (t + 1) % num_steps_per_epoch == 0:
        ep_len, ep_ret = test_for_one_episode(test_env, algorithm)

Dependencies

Dependencies are available in requirements.txt; although there might be one or two missing dependencies that you need to install yourself.

Train an agent

Setup (wandb & GPU)

Add this to your bashrc or bash_profile and source it.

You should replace “account_name” with whatever wandb account that you want to use.

export OFFPCC_WANDB_ENTITY="account_name"

From the command line:

cd offpcc
CUDA_VISIBLE_DEVICES=3 OFFPCC_WANDB_PROJECT=project123 python launch.py --env <env-name> --algo <algo-name> --config <config-path> --run_id <id>

For DDPG, TD3, SAC

On pendulum-v0:

python launch.py --env pendulum-v0 --algo sac --config configs/test/template_short.gin --run_id 1

Commands and plots for benchmarking on Pybullet domains are in a Issue called “Performance check against SB3”.

For RecurrentDDPG, RecurrentTD3, RecurrentSAC

On pendulum-p-v0:

python launch.py --env pendulum-p-v0 --algo rsac --config configs/test/template_recurrent_100k.gin --run_id 1

Reproducing paper results

To reproduce paper results, simply run the commands in the previous section with the appropriate env name (listed below) and config files (their file names are highly readable). Mapping between env names used in code and env names used in paper:

  • pendulum-v0: pendulum
  • pendulum-p-v0: pendulum-p
  • pendulum-va-v0: pendulum-v
  • dmc-cartpole-balance-v0: cartpole-balance
  • dmc-cartpole-balance-p-v0: cartpole-balance-p
  • dmc-cartpole-balance-va-v0: cartpole-balance-v
  • dmc-cartpole-swingup-v0: cartpole-swingup
  • dmc-cartpole-swingup-p-v0: cartpole-swingup-p
  • dmc-cartpole-swingup-va-v0: cartpole-swingup-v
  • reacher-pomdp-v0: reacher-pomdp
  • water-maze-simple-pomdp-v0: watermaze
  • bumps-normal-test-v0: push-r-bump

Render learned policy

Create a folder in the same directory as offpcc, called results. In there, create a folder with the name of the environment, e.g., pendulum-p-v0. Within that env folder, create a folder with the name of the algorithm, e.g., rsac. You can get an idea of the algorithms available from the algo_name2class diectionary defined in offpcc/launch.py. Within that algorithm folder, create a folder with the run_id, e.g., 1. Simply put the saved actor (also actor summarizer for recurrent algorithms) into that inner most foler - they can be downloaded from the wandb website after your run finishes. Finally, go back into offpcc, and call

python launch.py --env pendulum-v0 --algo sac --config configs/test/template_short.gin --run_id 1 --render

For bumps-normal-test-v0, you need to modify the test_for_one_episode function within offpcc/basics/run_fns.py because, for Pybullet environments, the env.step must only appear once before the env.reset() call.

Owner
Zhihan
Zhihan
Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences", CVPR 2021.

HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature fo

Google Interns 50 Dec 21, 2022
PyTorch implementation of normalizing flow models

PyTorch implementation of normalizing flow models

Vincent Stimper 242 Jan 02, 2023
YuNetのPythonでのONNX、TensorFlow-Lite推論サンプル

YuNet-ONNX-TFLite-Sample YuNetのPythonでのONNX、TensorFlow-Lite推論サンプルです。 TensorFlow-LiteモデルはPINTO0309/PINTO_model_zoo/144_YuNetのものを使用しています。 Requirement Op

KazuhitoTakahashi 8 Nov 17, 2021
A multi-mode modulator for multi-domain few-shot classification (ICCV)

A multi-mode modulator for multi-domain few-shot classification (ICCV)

Yanbin Liu 8 Apr 28, 2022
Densely Connected Convolutional Networks, In CVPR 2017 (Best Paper Award).

Densely Connected Convolutional Networks (DenseNets) This repository contains the code for DenseNet introduced in the following paper Densely Connecte

Zhuang Liu 4.5k Jan 03, 2023
Face detection using deep learning.

Face Detection Docker Solution Using Faster R-CNN Dockerface is a deep learning face detector. It deploys a trained Faster R-CNN network on Caffe thro

Nataniel Ruiz 181 Dec 19, 2022
SpeechBrain is an open-source and all-in-one speech toolkit based on PyTorch.

The SpeechBrain Toolkit SpeechBrain is an open-source and all-in-one speech toolkit based on PyTorch. The goal is to create a single, flexible, and us

SpeechBrain 5.1k Jan 02, 2023
The official implementation code of "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction."

PlantStereo This is the official implementation code for the paper "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction".

Wang Qingyu 14 Nov 28, 2022
An official source code for paper Deep Graph Clustering via Dual Correlation Reduction, accepted by AAAI 2022

Dual Correlation Reduction Network An official source code for paper Deep Graph Clustering via Dual Correlation Reduction, accepted by AAAI 2022. Any

yueliu1999 109 Dec 23, 2022
Implementation of the paper NAST: Non-Autoregressive Spatial-Temporal Transformer for Time Series Forecasting.

Non-AR Spatial-Temporal Transformer Introduction Implementation of the paper NAST: Non-Autoregressive Spatial-Temporal Transformer for Time Series For

Chen Kai 66 Nov 28, 2022
[CVPR2021] DoDNet: Learning to segment multi-organ and tumors from multiple partially labeled datasets

DoDNet This repo holds the pytorch implementation of DoDNet: DoDNet: Learning to segment multi-organ and tumors from multiple partially labeled datase

116 Dec 12, 2022
An implementation of the AlphaZero algorithm for Gomoku (also called Gobang or Five in a Row)

AlphaZero-Gomoku This is an implementation of the AlphaZero algorithm for playing the simple board game Gomoku (also called Gobang or Five in a Row) f

Junxiao Song 2.8k Dec 26, 2022
MRQy is a quality assurance and checking tool for quantitative assessment of magnetic resonance imaging (MRI) data.

Front-end View Backend View Table of Contents Description Prerequisites Running Basic Information Measurements User Interface Feedback and usage Descr

Center for Computational Imaging and Personalized Diagnostics 58 Dec 02, 2022
Library to enable Bayesian active learning in your research or labeling work.

Bayesian Active Learning (BaaL) BaaL is an active learning library developed at ElementAI. This repository contains techniques and reusable components

ElementAI 687 Dec 25, 2022
Rule Based Classification Project For Python

Rule-Based-Classification-Project (ENG) Business Problem: A game company wants to create new level-based customer definitions (personas) by using some

Deniz Can OĞUZ 4 Oct 29, 2022
Matching python environment code for Lux AI 2021 Kaggle competition, and a gym interface for RL models.

Lux AI 2021 python game engine and gym This is a replica of the Lux AI 2021 game ported directly over to python. It also sets up a classic Reinforceme

Geoff McDonald 74 Nov 03, 2022
Brain Tumor Detection with Tensorflow Neural Networks.

Brain-Tumor-Detection A convolutional neural network model built with Tensorflow & Keras to detect brain tumor and its different variants. Data of the

404ErrorNotFound 5 Aug 23, 2022
Practical and Real-world applications of ML based on the homework of Hung-yi Lee Machine Learning Course 2021

Machine Learning Theory and Application Overview This repository is inspired by the Hung-yi Lee Machine Learning Course 2021. In that course, professo

SilenceJiang 35 Nov 22, 2022
Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers

Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers Results results on COCO val Backbone Method Lr Schd PQ Config Download

155 Dec 20, 2022
General neural ODE and DAE modules for power system dynamic modeling.

Py_PSNODE General neural ODE and DAE modules for power system dynamic modeling. The PyTorch-based ODE solver is developed based on torchdiffeq. Sample

14 Dec 31, 2022