Official Code for VideoLT: Large-scale Long-tailed Video Recognition (ICCV 2021)

Overview

Pytorch Code for VideoLT

[Website][Paper]

Updates

  • [10/29/2021] Features uploaded to Google Drive, for access please send us an e-mail: zhangxing18 at fudan.edu.cn
  • [09/28/2021] Features uploaded to Aliyun Drive(deprecated), for access please send us an e-mail: zhangxing18 at fudan.edu.cn
  • [08/23/2021] Checkpoint links uploaded, sorry we are handling campus network bandwidth limitation, dataset will be released in this weeek.
  • [08/15/2021] Code released. Dataset download links and checkpoints links will be updated in a week.
  • [07/29/2021] Dataset released, visit https://videolt.github.io/ for downloading.
  • [07/23/2021] VideoLT is accepted by ICCV2021.

concept

Overview

VideoLT is a large-scale long-tailed video recognition dataset, as a step toward real-world video recognition. We provide VideoLT dataset and long-tailed baselines in this repo including:

Data Preparation

Please visit https://videolt.github.io/ to obtain download links. We provide raw videos and extracted features.

For using extracted features, please modify dataset/dutils.py and set the correct path to features.

Model Zoo

The baseline scripts and checkpoints are provided in MODELZOO.md.

FrameStack

FrameStack is simple yet effective approach for long-tailed video recognition which re-samples training data at the frame level and adopts a dynamic sampling strategy based on knowledge learned by the network. The rationale behind FrameStack is to dynamically sample more frames from videos in tail classes and use fewer frames for those from head classes.

framestack

Usage

Requirement

pip install -r requirements.txt

Prepare Data Path

  1. Modify FEATURE_NAME, PATH_TO_FEATURE and FEATURE_DIM in dataset/dutils.py.

  2. Set ROOT in dataset/dutils.py to labels folder. The directory structure is:

    labels
    |-- count-labels-train.lst
    |-- test.lst
    |-- test_videofolder.txt
    |-- train.lst
    |-- train_videofolder.txt
    |-- val_videofolder.txt
    `-- validate.lst

Train

We provide scripts for training. Please refer to MODELZOO.md.

Example training scripts:

FEATURE_NAME='ResNet101'

export CUDA_VISIBLE_DEVICES='2'
python base_main.py  \
     --augment "mixup" \
     --feature_name $FEATURE_NAME \
     --lr 0.0001 \
     --gd 20 --lr_steps 30 60 --epochs 100 \
     --batch-size 128 -j 16 \
     --eval-freq 5 \
     --print-freq 20 \
     --root_log=$FEATURE_NAME-log \
     --root_model=$FEATURE_NAME'-checkpoints' \
     --store_name=$FEATURE_NAME'_bs128_lr0.0001_lateavg_mixup' \
     --num_class=1004 \
     --model_name=NonlinearClassifier \
     --train_num_frames=60 \
     --val_num_frames=150 \
     --loss_func=BCELoss \

Note: Set args.resample, args.augment and args.loss_func can apply multiple long-tailed stratigies.

Options:

    args.resample: ['None', 'CBS','SRS']
    args.augment : ['None', 'mixup', 'FrameStack']
    args.loss_func: ['BCELoss', 'LDAM', 'EQL', 'CBLoss', 'FocalLoss']

Test

We provide scripts for testing in scripts. Modify CKPT to saved checkpoints.

Example testing scripts:

FEATURE_NAME='ResNet101'
CKPT='VideoLT_checkpoints/ResNet-101/ResNet101_bs128_lr0.0001_lateavg_mixup/ckpt.best.pth.tar'

export CUDA_VISIBLE_DEVICES='1'
python base_test.py \
     --resume $CKPT \
     --feature_name $FEATURE_NAME \
     --batch-size 128 -j 16 \
     --print-freq 20 \
     --num_class=1004 \
     --model_name=NonlinearClassifier \
     --train_num_frames=60 \
     --val_num_frames=150 \
     --loss_func=BCELoss \

Citing

If you find VideoLT helpful for your research, please consider citing:

@misc{zhang2021videolt,
title={VideoLT: Large-scale Long-tailed Video Recognition}, 
author={Xing Zhang and Zuxuan Wu and Zejia Weng and Huazhu Fu and Jingjing Chen and Yu-Gang Jiang and Larry Davis},
year={2021},
eprint={2105.02668},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
Owner
Skye
Soul Programmer & Science Enthusiast
Skye
[ICCV'21] Neural Radiance Flow for 4D View Synthesis and Video Processing

NeRFlow [ICCV'21] Neural Radiance Flow for 4D View Synthesis and Video Processing Datasets The pouring dataset used for experiments can be download he

44 Dec 20, 2022
TuckER: Tensor Factorization for Knowledge Graph Completion

TuckER: Tensor Factorization for Knowledge Graph Completion This codebase contains PyTorch implementation of the paper: TuckER: Tensor Factorization f

Ivana Balazevic 296 Dec 06, 2022
This repo will contain code to reproduce and build upon understanding transfer learning

What is being transferred in transfer learning? This repo contains the code for the following paper: Behnam Neyshabur*, Hanie Sedghi*, Chiyuan Zhang*.

4 Jun 16, 2021
The ARCA23K baseline system

ARCA23K Baseline System This is the source code for the baseline system associated with the ARCA23K dataset. Details about ARCA23K and the baseline sy

4 Jul 02, 2022
Music Source Separation; Train & Eval & Inference piplines and pretrained models we used for 2021 ISMIR MDX Challenge.

Music Source Separation with Channel-wise Subband Phase Aware ResUnet (CWS-PResUNet) Introduction This repo contains the pretrained Music Source Separ

Lau 100 Dec 25, 2022
Non-Vacuous Generalisation Bounds for Shallow Neural Networks

This package requires jax, tensorflow, and numpy. Either tensorflow or scikit-learn can be used for loading data. To run in a nix-shell with required

Felix Biggs 0 Feb 04, 2022
Hypercomplex Neural Networks with PyTorch

HyperNets Hypercomplex Neural Networks with PyTorch: this repository would be a container for hypercomplex neural network modules to facilitate resear

Eleonora Grassucci 21 Dec 27, 2022
METS/ALTO OCR enhancing tool by the National Library of Luxembourg (BnL)

Nautilus-OCR The National Library of Luxembourg (BnL) started its first initiative in digitizing newspapers, with layout recognition and OCR on articl

National Library of Luxembourg 36 Dec 05, 2022
Official implementation of Protected Attribute Suppression System, ICCV 2021

Official implementation of Protected Attribute Suppression System, ICCV 2021

Prithviraj Dhar 6 Jan 01, 2023
A curated list of awesome game datasets, and tools to artificial intelligence in games

🎮 Awesome Game Datasets In computer science, Artificial Intelligence (AI) is intelligence demonstrated by machines. Its definition, AI research as th

Leonardo Mauro 454 Jan 03, 2023
Code for the Interspeech 2021 paper "AST: Audio Spectrogram Transformer".

AST: Audio Spectrogram Transformer Introduction Citing Getting Started ESC-50 Recipe Speechcommands Recipe AudioSet Recipe Pretrained Models Contact I

Yuan Gong 603 Jan 07, 2023
data/code repository of "C2F-FWN: Coarse-to-Fine Flow Warping Network for Spatial-Temporal Consistent Motion Transfer"

C2F-FWN data/code repository of "C2F-FWN: Coarse-to-Fine Flow Warping Network for Spatial-Temporal Consistent Motion Transfer" (https://arxiv.org/abs/

EKILI 46 Dec 14, 2022
Nonnegative spatial factorization for multivariate count data

Nonnegative spatial factorization for multivariate count data This repository contains supporting code to facilitate reproducible analysis. For detail

Will Townes 24 Dec 19, 2022
Riemannian Convex Potential Maps

Modeling distributions on Riemannian manifolds is a crucial component in understanding non-Euclidean data that arises, e.g., in physics and geology. The budding approaches in this space are limited b

Facebook Research 61 Nov 28, 2022
The official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness.

This repository is the official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness. Requirements pip install -r requi

Jie Ren 17 Dec 12, 2022
Probabilistic Entity Representation Model for Reasoning over Knowledge Graphs

Implementation for the paper: Probabilistic Entity Representation Model for Reasoning over Knowledge Graphs, Nurendra Choudhary, Nikhil Rao, Sumeet Ka

Nurendra Choudhary 8 Nov 15, 2022
Easy to use and customizable SOTA Semantic Segmentation models with abundant datasets in PyTorch

Semantic Segmentation Easy to use and customizable SOTA Semantic Segmentation models with abundant datasets in PyTorch Features Applicable to followin

sithu3 530 Jan 05, 2023
Deep metric learning methods implemented in Chainer

Deep Metric Learning Implementation of several methods for deep metric learning in Chainer v4.2.0. Proxy-NCA: No Fuss Distance Metric Learning using P

ronekko 156 Nov 28, 2022
This is a repository of our model for weakly-supervised video dense anticipation.

Introduction This is a repository of our model for weakly-supervised video dense anticipation. More results on GTEA, Epic-Kitchens etc. will come soon

2 Apr 09, 2022
Keqing Chatbot With Python

KeqingChatbot A public running instance can be found on telegram as @keqingchat_bot. Requirements Python 3.8 or higher. A bot token. Local Deploy git

Rikka-Chan 2 Jan 16, 2022