Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly

Overview

Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly

License: MIT

Code for this paper Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly. [Preprint]

Tianlong Chen, Yu Cheng, Zhe Gan, Jingjing Liu, Zhangyang Wang.

Overview

Training generative adversarial networks (GANs) with limited data generally results in deteriorated performance and collapsed models. To conquerthis challenge, we are inspired by the latest observation of Kalibhat et al. (2020); Chen et al.(2021d), that one can discover independently trainable and highly sparse subnetworks (a.k.a.,lottery tickets) from GANs. Treating this as aninductive prior, we decompose the data-hungry GAN training into two sequential sub-problems:

  • (i) identifying the lottery ticket from the original GAN;
  • (ii) then training the found sparse subnetwork with aggressive data and feature augmentations.

Both sub-problems re-use the same small training set of real images. Such a coordinated framework enables us to focus on lower-complexity and more data-efficient sub-problems, effectively stabilizing trainingand improving convergence.

Methodology

Experiment Results

More experiments can be found in our paper.

Implementation

For the first step, finding the lottery tickets in GAN is referred to this repo.

For the second step, training GAN ticket toughly are provides as follow:

Environment for SNGAN

conda install python3.6
conda install pytorch1.4.0 -c pytorch
pip install tensorflow-gpu==1.13
pip install imageio
pip install tensorboardx

R.K. Donwload fid statistics from Fid_Stat.

Commands for SNGAN

R.K. Limited data training for SNGAN

  • Dataset: CIFAR-10

Example for full model training on 20% limited data (--ratio 0.2):

python train_less.py -gen_bs 128 -dis_bs 64 --dataset cifar10 --img_size 32 --max_iter 50000 --model sngan_cifar10 --latent_dim 128 --gf_dim 256 --df_dim 128 --g_spectral_norm False --d_spectral_norm True --g_lr 0.0002 --d_lr 0.0002 --beta1 0.0 --beta2 0.9 --init_type xavier_uniform --n_critic 5 --val_freq 20 --exp_name sngan_cifar10_adv_gd_less_0.2 --init-path initial_weights --ratio 0.2

Example for full model training on 20% limited data (--ratio 0.2) with AdvAug on G and D:

python train_adv_gd_less.py -gen_bs 128 -dis_bs 64 --dataset cifar10 --img_size 32 --max_iter 50000 --model sngan_cifar10 --latent_dim 128 --gf_dim 256 --df_dim 128 --g_spectral_norm False --d_spectral_norm True --g_lr 0.0002 --d_lr 0.0002 --beta1 0.0 --beta2 0.9 --init_type xavier_uniform --n_critic 5 --val_freq 20 --exp_name sngan_cifar10_adv_gd_less_0.2 --init-path initial_weights --gamma 0.01 --step 1 --ratio 0.2

Example for sparse model (i.e., GAN tickets) training on 20% limited data (--ratio 0.2) with AdvAug on G and D:

python train_with_masks_adv_gd_less.py -gen_bs 128 -dis_bs 64 --dataset cifar10 --img_size 32 --max_iter 50000 --model sngan_cifar10 --latent_dim 128 --gf_dim 256 --df_dim 128 --g_spectral_norm False --d_spectral_norm True --g_lr 0.0002 --d_lr 0.0002 --beta1 0.0 --beta2 0.9 --init_type xavier_uniform --n_critic 5 --val_freq 20 --exp_name sngan_cifar10_adv_gd_less_0.2 --init-path initial_weights --gamma 0.01 --step 1 --ratio 0.2 --rewind-path <>
  • --rewind-path: the stored path of identified sparse masks

Environment for BigGAN

conda env create -f environment.yml studiogan

Commands for BigGAN

R.K. Limited data training for BigGAN

  • Dataset: TINY ILSVRC

Example:

python main_ompg.py -t -e -c ./configs/TINY_ILSVRC2012/BigGAN_adv.json --eval_type valid --seed 42 --mask_path checkpoints/BigGAN-train-0.1 --mask_round 2 --reduce_train_dataset 0.1 --gamma 0.01 
  • --mask_path: the stored path of identified sparse masks
  • --mask_round: the sparsity level = 0.8 ^ mask_round
  • --reduce_train_dataset: the size of used limited training data
  • --gamma: hyperparameter for AdvAug. You can set it to 0 to git rid of AdvAug

  • Dataset: CIFAR100

Example:

python main_ompg.py -t -e -c ./configs/CIFAR100_less/DiffAugGAN_adv.json --ratio 0.2 --mask_path checkpoints/diffauggan_cifar100_0.2 --mask_round 9 --seed 42 --gamma 0.01
  • DiffAugGAN_adv.json: it indicate this confirguration use DiffAug.

Pre-trained Models

  • SNGAN / CIFAR-10 / 10% Training Data / 10.74% Remaining Weights

https://www.dropbox.com/sh/7v8hn2859cvm7jj/AACyN8FOkMjgMwy5ibVj61IPa?dl=0

  • SNGAN / CIFAR-10 / 10% Training Data / 10.74% Remaining Weights + AdvAug on G and D

https://www.dropbox.com/sh/gsklrdcjzogqzcd/AAALlIYcWOZuERLcocKIqlEya?dl=0

  • BigGAN / CIFAR-10 / 10% Training Data / 13.42% Remaining Weights + DiffAug + AdvAug on G and D

https://www.dropbox.com/sh/epuajb1iqn5xma6/AAAD0zwehky1wvV3M3-uesHsa?dl=0

  • BigGAN / CIFAR-100 10% / Training Data / 13.42% Remaining Weights + DiffAug + AdvAug on G and D

https://www.dropbox.com/sh/y3pqdqee39jpct4/AAAsSebqHwkWmjO_O8Hp0hcEa?dl=0

  • BigGAN / Tiny-ImageNet / 10% Training Data / Full model

https://www.dropbox.com/sh/2rmvqwgcjir1p2l/AABNEo0B-0V9ZSnLnKF_OUA3a?dl=0

  • BigGAN / Tiny-ImageNet / 10% Training Data / Full model + AdvAug on G and D

https://www.dropbox.com/sh/pbwjphualzdy2oe/AACZ7VYJctNBKz3E9b8fgj_Ia?dl=0

  • BigGAN / Tiny-ImageNet / 10% Training Data / 64% Remaining Weights

https://www.dropbox.com/sh/82i9z44uuczj3u3/AAARsfNzOgd1R9sKuh1OqUdoa?dl=0

  • BigGAN / Tiny-ImageNet / 10% Training Data / 64% Remaining Weights + AdvAug on G and D

https://www.dropbox.com/sh/yknk1joigx0ufbo/AAChMvzCsedejFjY1XxGcaUta?dl=0

Citation

@misc{chen2021ultradataefficient,
      title={Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly}, 
      author={Tianlong Chen and Yu Cheng and Zhe Gan and Jingjing Liu and Zhangyang Wang},
      year={2021},
      eprint={2103.00397},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Acknowledgement

https://github.com/VITA-Group/GAN-LTH

https://github.com/GongXinyuu/sngan.pytorch

https://github.com/VITA-Group/AutoGAN

https://github.com/POSTECH-CVLab/PyTorch-StudioGAN

https://github.com/mit-han-lab/data-efficient-gans

https://github.com/lucidrains/stylegan2-pytorch

Owner
VITA
Visual Informatics Group @ University of Texas at Austin
VITA
PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning

PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning Warning: This is a rapidly evolving research prototype.

MIT Probabilistic Computing Project 190 Dec 27, 2022
A Python framework for developing parallelized Computational Fluid Dynamics software to solve the hyperbolic 2D Euler equations on distributed, multi-block structured grids.

pyHype: Computational Fluid Dynamics in Python pyHype is a Python framework for developing parallelized Computational Fluid Dynamics software to solve

Mohamed Khalil 21 Nov 22, 2022
Tensorflow implementation of Human-Level Control through Deep Reinforcement Learning

Human-Level Control through Deep Reinforcement Learning Tensorflow implementation of Human-Level Control through Deep Reinforcement Learning. This imp

Devsisters Corp. 2.4k Dec 26, 2022
(CVPR2021) ClassSR: A General Framework to Accelerate Super-Resolution Networks by Data Characteristic

ClassSR (CVPR2021) ClassSR: A General Framework to Accelerate Super-Resolution Networks by Data Characteristic Paper Authors: Xiangtao Kong, Hengyuan

Xiangtao Kong 308 Jan 05, 2023
Simple streamlit app to demonstrate HERE Tour Planning

Table of Contents About the Project Built With Getting Started Prerequisites Installation Usage Roadmap Contributing License Acknowledgements About Th

Amol 8 Sep 05, 2022
Final term project for Bayesian Machine Learning Lecture (XAI-623)

Mixquality_AL Final Term Project For Bayesian Machine Learning Lecture (XAI-623) Youtube Link The presentation is given in YoutubeLink Problem Formula

JeongEun Park 3 Jan 18, 2022
Repo for "Physion: Evaluating Physical Prediction from Vision in Humans and Machines" submission to NeurIPS 2021 (Datasets & Benchmarks track)

Physion: Evaluating Physical Prediction from Vision in Humans and Machines This repo contains code and data to reproduce the results in our paper, Phy

Cognitive Tools Lab 38 Jan 06, 2023
Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction Renรฉ Ranftl,

Intel ISL (Intel Intelligent Systems Lab) 1.3k Dec 28, 2022
This project deals with the detection of skin lesions within the ISICs dataset using YOLOv3 Object Detection with Darknet.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Skin Lesion detection using YOLO This project deal

Lalith Veerabhadrappa Badiger 1 Nov 22, 2021
Code for Understanding Pooling in Graph Neural Networks

Select, Reduce, Connect This repository contains the code used for the experiments of: "Understanding Pooling in Graph Neural Networks" Setup Install

Daniele Grattarola 37 Dec 13, 2022
๐Ÿš€ An end-to-end ML applications using PyTorch, W&B, FastAPI, Docker, Streamlit and Heroku

๐Ÿš€ An end-to-end ML applications using PyTorch, W&B, FastAPI, Docker, Streamlit and Heroku

Made With ML 82 Jun 26, 2022
Fuzzing JavaScript Engines with Aspect-preserving Mutation

DIE Repository for "Fuzzing JavaScript Engines with Aspect-preserving Mutation" (in S&P'20). You can check the paper for technical details. Environmen

gts3.org (<a href=[email protected])"> 190 Dec 11, 2022
Sequence-tagging using deep learning

Classification using Deep Learning Requirements PyTorch version = 1.9.1+cu111 Python version = 3.8.10 PyTorch-Lightning version = 1.4.9 Huggingface

Vineet Kumar 2 Dec 20, 2022
Dictionary Learning with Uniform Sparse Representations for Anomaly Detection

Dictionary Learning with Uniform Sparse Representations for Anomaly Detection Implementation of the Uniform DL Representation for AD algorithm describ

Paul Irofti 1 Nov 23, 2022
PyTorch implementation of popular datasets and models in remote sensing

PyTorch Remote Sensing (torchrs) (WIP) PyTorch implementation of popular datasets and models in remote sensing tasks (Change Detection, Image Super Re

isaac 222 Dec 28, 2022
Example of a Quantum LSTM

Example of a Quantum LSTM

Riccardo Di Sipio 36 Oct 31, 2022
Deep Reinforcement Learning for mobile robot navigation in ROS Gazebo simulator

DRL-robot-navigation Deep Reinforcement Learning for mobile robot navigation in ROS Gazebo simulator. Using Twin Delayed Deep Deterministic Policy Gra

87 Jan 07, 2023
The repository offers the official implementation of our paper in PyTorch.

Cloth Interactive Transformer (CIT) Cloth Interactive Transformer for Virtual Try-On Bin Ren1, Hao Tang1, Fanyang Meng2, Runwei Ding3, Ling Shao4, Phi

Bingoren 49 Dec 01, 2022
Implementation of Bagging and AdaBoost Algorithm

Bagging-and-AdaBoost Implementation of Bagging and AdaBoost Algorithm Dataset Red Wine Quality Data Sets For simplicity, we will have 2 classes of win

Zechen Ma 1 Nov 01, 2021
2021-MICCAI-Progressively Normalized Self-Attention Network for Video Polyp Segmentation

2021-MICCAI-Progressively Normalized Self-Attention Network for Video Polyp Segmentation Authors: Ge-Peng Ji*, Yu-Cheng Chou*, Deng-Ping Fan, Geng Che

Ge-Peng Ji (Daniel) 85 Dec 30, 2022