This repository is the official implementation of Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning (NeurIPS21).

Overview

Core-tuning

This repository is the official implementation of ``Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning" (NeurIPS 2021).

The key contributions of this paper are threefold:

  • To the best of our knowledge, we are among the first to look into the fine-tuning stage of contrastive self-supervised learning (CSL) models, which is an important yet under-explored question. To address this, we propose a novel Core-tuning method.
  • We theoretically analyze the benefits of the supervised contrastive loss on representation learning and model optimization, revealing that it is beneficial to model fine-tuning.
  • Promising results on image classification and semantic segmentation verify the effectiveness of Core-tuning for improving the fine-tuning performance of CSL models. We also empirically find that Core-tuning benefits CSL models in terms of domain generalization and adversarial robustness on downstream tasks. Considering the theoretical guarantee and empirical effectiveness of Core-tuning, we recommend using it as a standard baseline to fine-tune CSL models.

The implementation is as follows.

1. Requirements

  • To install requirements:
pip install -r requirements.txt

2. Pretrained models

  • We provide two checkpoints via Google Drive. Please download the two checkpoints from here.
  • One checkpoint is the pre-trained ResNet-50(1x) model, pre-trained by MoCo-v2. We name it pretrain_moco_v2.pkl, which is a necessity for training.
  • Another one is the ResNet-50 model fine-tuned by our proposed method, named Core-tuning-model.tar. From this checkpoint, users can directly evaluate the end results without having to train afresh.
  • Unzip the download zip file and move the checkpoint files to /code/checkpoint/.

3. Datasets

  • The dataset of CIFAR-10 can be downloaded by directly running our code.

4. Training

  • To train the model(s) in the paper, run this command:
python Core-tuning.py -a resnet50-ssl --gpu 0 -d cifar10 --eta_weight 0.1 --mixup_alpha 1  --checkpoint checkpoint/ssl-core-tuning/Core_eta0.1_alpha1 --train-batch 64 --accumulate_step 4 --test-batch 100  
  • Note that the GPU memory should be 24G. Otherwise, you need to halve the train batch size and double the accumulation step. Based on the accumulation, the total training batch is 256.

5. Evaluation

  • To evaluate models, run:
python Core-tuning.py -a resnet50-ssl --gpu 0 -d cifar10 --test-batch 100 --evaluate --checkpoint checkpoint/Core-tuning-model/ --resume checkpoint/Core-tuning-model/Core-tuning-model.tar
  • The path above refers to our provided checkpoint. You can validate your model by changing the file path of "--checkpoint" and "--resume".

6. Results

  • Our model achieves the following performance on CIFAR-10:
Methods Top 1 Accuracy
CE-tuning 94.70+/-0.39
Core-tuning (ours) 97.31+/-0.10
  • Visualizaiton of the learned features on the CIFAR10 validation set:

7. Citaiton

If you find our work inspiring or use our codebase in your research, please cite our work.

@inproceedings{zhang2021unleashing,
  title={Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning},
  author={Zhang, Yifan and Hooi, Bryan and Hu, Dapeng and Liang, Jian and Feng, Jiashi},
  booktitle={Advances in Neural Information Processing Systems}, 
  year={2021}
}

8. Acknowledgements

This project is developed based on MoCo and SupContrast.

Owner
vanint
vanint
Alpha-Zero - Telegram Group Manager Bot Written In Python Using Pyrogram

✨ Alpha Zero Bot ✨ Telegram Group Manager Bot + Userbot Written In Python Using

1 Feb 17, 2022
🔥 TensorFlow Code for technical report: "YOLOv3: An Incremental Improvement"

🆕 Are you looking for a new YOLOv3 implemented by TF2.0 ? If you hate the fucking tensorflow1.x very much, no worries! I have implemented a new YOLOv

3.6k Dec 26, 2022
CausalNLP is a practical toolkit for causal inference with text as treatment, outcome, or "controlled-for" variable.

CausalNLP CausalNLP is a practical toolkit for causal inference with text as treatment, outcome, or "controlled-for" variable. Install pip install -U

Arun S. Maiya 95 Jan 03, 2023
[NeurIPS 2021] Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data

Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data (NeurIPS 2021) This repository will provide the official PyTorch implementa

Liming Jiang 238 Nov 25, 2022
Source codes for Improved Few-Shot Visual Classification (CVPR 2020), Enhancing Few-Shot Image Classification with Unlabelled Examples

Source codes for Improved Few-Shot Visual Classification (CVPR 2020), Enhancing Few-Shot Image Classification with Unlabelled Examples (WACV 2022) and Beyond Simple Meta-Learning: Multi-Purpose Model

PLAI Group at UBC 42 Dec 06, 2022
No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consistency

This repository contains the implementation for the paper: No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consiste

Alireza Golestaneh 75 Dec 30, 2022
Language Models for the legal domain in Spanish done @ BSC-TEMU within the "Plan de las Tecnologías del Lenguaje" (Plan-TL).

Spanish legal domain Language Model ⚖️ This repository contains the page for two main resources for the Spanish legal domain: A RoBERTa model: https:/

Plan de Tecnologías del Lenguaje - Gobierno de España 12 Nov 14, 2022
Code for PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Relighting and Material Editing

PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Relighting and Material Editing CVPR 2021. Project page: https://kai-46.github.io/

Kai Zhang 141 Dec 14, 2022
Platform-agnostic AI Framework 🔥

🇬🇧 TensorLayerX is a multi-backend AI framework, which can run on almost all operation systems and AI hardwares, and support hybrid-framework progra

TensorLayer Community 171 Jan 06, 2023
Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting

Autoformer (NeurIPS 2021) Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting Time series forecasting is a c

THUML @ Tsinghua University 847 Jan 08, 2023
[TOG 2021] PyTorch implementation for the paper: SofGAN: A Portrait Image Generator with Dynamic Styling.

This repository contains the official PyTorch implementation for the paper: SofGAN: A Portrait Image Generator with Dynamic Styling. We propose a SofGAN image generator to decouple the latent space o

Anpei Chen 694 Dec 23, 2022
Convolutional Neural Network for 3D meshes in PyTorch

MeshCNN in PyTorch SIGGRAPH 2019 [Paper] [Project Page] MeshCNN is a general-purpose deep neural network for 3D triangular meshes, which can be used f

Rana Hanocka 1.4k Jan 04, 2023
Tensorflow 2.x implementation of Vision-Transformer model

Vision Transformer Unofficial Tensorflow 2.x implementation of the Transformer based Image Classification model proposed by the paper AN IMAGE IS WORT

Soumik Rakshit 16 Jul 20, 2022
Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022
Dashboard for the COVID19 spread

COVID-19 Data Explorer App A streamlit Dashboard for the COVID-19 spread. The app is live at: [https://covid19.cwerner.ai]. New data is queried from G

Christian Werner 22 Sep 29, 2022
[ICCV 2021] Deep Hough Voting for Robust Global Registration

Deep Hough Voting for Robust Global Registration, ICCV, 2021 Project Page | Paper | Video Deep Hough Voting for Robust Global Registration Junha Lee1,

Junha Lee 10 Dec 02, 2022
Repo for "Physion: Evaluating Physical Prediction from Vision in Humans and Machines" submission to NeurIPS 2021 (Datasets & Benchmarks track)

Physion: Evaluating Physical Prediction from Vision in Humans and Machines This repo contains code and data to reproduce the results in our paper, Phy

Cognitive Tools Lab 38 Jan 06, 2023
Code for "Neural Body: Implicit Neural Representations with Structured Latent Codes for Novel View Synthesis of Dynamic Humans" CVPR 2021 best paper candidate

News 05/17/2021 To make the comparison on ZJU-MoCap easier, we save quantitative and qualitative results of other methods at here, including Neural Vo

ZJU3DV 748 Jan 07, 2023
This repository lets you interact with Lean through a REPL.

lean-gym This repository lets you interact with Lean through a REPL. See Formal Mathematics Statement Curriculum Learning for a presentation of lean-g

OpenAI 87 Dec 28, 2022
Official repository of "DeepMIH: Deep Invertible Network for Multiple Image Hiding", TPAMI 2022.

DeepMIH: Deep Invertible Network for Multiple Image Hiding (TPAMI 2022) This repo is the official code for DeepMIH: Deep Invertible Network for Multip

Junpeng Jing 67 Nov 22, 2022