Remote sensing change detection tool based on PaddlePaddle

Overview

PdRSCD

Python 3.7 Paddle 2.1.0 License GitHub Repo stars

PdRSCD(PaddlePaddle Remote Sensing Change Detection)是一个基于飞桨PaddlePaddle的遥感变化检测的项目,pypi包名为ppcd。目前0.2版本,最新支持图像列表输入的训练和预测,如多期影像、多源影像甚至多期多源影像。可以快速完成分割、变化检测等任务。

在线项目实例

  1. 【ppcd快速入门】经典LEVIR数据集变化检测
  2. 【ppcd快速入门】大图滑框变化检测与拼接
  3. 【ppcd快速入门】多光谱遥感影像变化检测
  4. 【ppcd快速入门】多光谱遥感影像分割
  5. 【ppcd快速入门】多标签遥感图像变化检测(待更)
  6. 【ppcd快速入门】分类标签遥感变化检测(待更)

特点

  1. 适应$N(N\ge1)$期图像的读取和增强,支持jpg、tmp、tif和npy等格式,支持多光谱/波段
  2. 有更多有特色的数据增强
  3. 适应分割图标签、分类标签以及多标签(分割+变化标签)
  4. 网络多返回、多标签和多损失之间的组合
  5. 适应单通道预测图及双通道预测图的输出(argmax与threshold)
  6. 支持大图滑框/随机采样训练和滑框预测与拼接
  7. 支持保存为带地理坐标的tif

代码结构

PdRSCD的主要代码在ppcd中,文件夹组织如下。可以根据自己的任务修改和添加下面的代码。

ppcd
  ├── core  # 包含训练和预测的代码
  ├── datasets  # 包含创建数据列表和定义数据集的代码
  ├── losses  # 包含损失函数的代码
  ├── metrics  # 包含指标评价的代码
  ├── models  # 包含网络模型、特殊层、层初始化等代码
  ├── traditions  # 包含一些传统计算方法的代码
  ├── transforms  # 包含数据增强的代码
  ├── utils  # 包含其他代码,如计时等
  └── tools  # 包含工具代码,如分块、图像查看器等

现有资产与自定义

  1. 自定义数据集
  2. 模型库与自定义模型
  3. 损失函数与自定义损失函数
  4. 数据增强与自定义数据增强
  5. 传统处理方法
  6. 工具组

使用入门

  • 可以通过pip使用官方原直接进行安装。
pip install ppcd -i https://pypi.org/simple
  • 也可以通过克隆PdRSCD到项目中,并添加到环境变量。
# 克隆项目
# git clone https://github.com/geoyee/PdRSCD.git  # github可能较慢
git clone https://gitee.com/Geoyee/pd-rscd.git
    
import sys
sys.path.append('pd-rscd')  # 加载环境变量

说明

  1. 当前更新后需要在PaddlePaddle2.1.0及以上上运行,否则可能会卡在DataLoader上。除此之外DataLoader可能还存在问题,例如在一个CPU项目上卡住了,不知道原因,建议在2.1.0及以上版本的GPU设备上运行(至少AI Studio的GPU肯定是没问题的)。
  2. 由于GDAL无法直接通过pip安装,所以如果需要使用GDAL的地方目前需要自行安装GDAL。

后续重点

  • 添加多源数据输入,栅格得分结果输出的空间分析功能(问号)
  • 添加将tif转为shp以及读取shp进行训练。预测(尽量)

相关链接

Owner
飞桨3S小分队
LETR: Line Segment Detection Using Transformers without Edges

LETR: Line Segment Detection Using Transformers without Edges Introduction This repository contains the official code and pretrained models for Line S

mlpc-ucsd 157 Jan 06, 2023
A PyTorch port of the Neural 3D Mesh Renderer

Neural 3D Mesh Renderer (CVPR 2018) This repo contains a PyTorch implementation of the paper Neural 3D Mesh Renderer by Hiroharu Kato, Yoshitaka Ushik

Daniilidis Group University of Pennsylvania 1k Jan 09, 2023
COPA-SSE contains crowdsourced explanations for the Balanced COPA dataset

COPA-SSE Repository for COPA-SSE: Semi-Structured Explanations for Commonsense Reasoning. COPA-SSE contains crowdsourced explanations for the Balanced

Ana Brassard 5 Jul 31, 2022
PyTorch Implementation of CvT: Introducing Convolutions to Vision Transformers

CvT: Introducing Convolutions to Vision Transformers Pytorch implementation of CvT: Introducing Convolutions to Vision Transformers Usage: img = torch

Rishikesh (ऋषिकेश) 193 Jan 03, 2023
2021搜狐校园文本匹配算法大赛 分比我们低的都是帅哥队

sohu_text_matching 2021搜狐校园文本匹配算法大赛Top2:分比我们低的都是帅哥队 本repo包含了本次大赛决赛环节提交的代码文件及答辩PPT,提交的模型文件可在百度网盘获取(链接:https://pan.baidu.com/s/1T9FtwiGFZhuC8qqwXKZSNA ,

hflserdaniel 43 Oct 01, 2022
A modular active learning framework for Python

Modular Active Learning framework for Python3 Page contents Introduction Active learning from bird's-eye view modAL in action From zero to one in a fe

modAL 1.9k Dec 31, 2022
Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr\"om Method (NeurIPS 2021)

Skyformer This repository is the official implementation of Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr"om Method (NeurIPS 2021).

Qi Zeng 46 Sep 20, 2022
A PyTorch implementation of the Relational Graph Convolutional Network (RGCN).

Torch-RGCN Torch-RGCN is a PyTorch implementation of the RGCN, originally proposed by Schlichtkrull et al. in Modeling Relational Data with Graph Conv

Thiviyan Singam 66 Nov 30, 2022
Segmentation and Identification of Vertebrae in CT Scans using CNN, k-means Clustering and k-NN

Segmentation and Identification of Vertebrae in CT Scans using CNN, k-means Clustering and k-NN If you use this code for your research, please cite ou

41 Dec 08, 2022
AdelaiDepth is an open source toolbox for monocular depth prediction.

AdelaiDepth is an open source toolbox for monocular depth prediction.

Adelaide Intelligent Machines (AIM) Group 743 Jan 01, 2023
A LiDAR point cloud cluster for panoptic segmentation

Divide-and-Merge-LiDAR-Panoptic-Cluster A demo video of our method with semantic prior: More information will be coming soon! As a PhD student, I don'

YimingZhao 65 Dec 22, 2022
OpenMMLab's Next Generation Video Understanding Toolbox and Benchmark

Introduction English | 简体中文 MMAction2 is an open-source toolbox for video understanding based on PyTorch. It is a part of the OpenMMLab project. The m

OpenMMLab 2.7k Jan 07, 2023
minimizer-space de Bruijn graphs (mdBG) for whole genome assembly

rust-mdbg: Minimizer-space de Bruijn graphs (mdBG) for whole-genome assembly rust-mdbg is an ultra-fast minimizer-space de Bruijn graph (mdBG) impleme

Barış Ekim 148 Dec 01, 2022
ReferFormer - Official Implementation of ReferFormer

The official implementation of the paper: Language as Queries for Referring Vide

Jonas Wu 232 Dec 29, 2022
TorchMD-Net provides state-of-the-art graph neural networks and equivariant transformer neural networks potentials for learning molecular potentials

TorchMD-net TorchMD-Net provides state-of-the-art graph neural networks and equivariant transformer neural networks potentials for learning molecular

TorchMD 104 Jan 03, 2023
Unbalanced Feature Transport for Exemplar-based Image Translation (CVPR 2021)

UNITE and UNITE+ Unbalanced Feature Transport for Exemplar-based Image Translation (CVPR 2021) Unbalanced Intrinsic Feature Transport for Exemplar-bas

Fangneng Zhan 183 Nov 09, 2022
A lightweight library designed to accelerate the process of training PyTorch models by providing a minimal

A lightweight library designed to accelerate the process of training PyTorch models by providing a minimal, but extensible training loop which is flexible enough to handle the majority of use cases,

Chris Hughes 110 Dec 23, 2022
Official implementation of the RAVE model: a Realtime Audio Variational autoEncoder

Official implementation of the RAVE model: a Realtime Audio Variational autoEncoder

Antoine Caillon 589 Jan 02, 2023
(NeurIPS 2021) Pytorch implementation of paper "Re-ranking for image retrieval and transductive few-shot classification"

SSR (NeurIPS 2021) Pytorch implementation of paper "Re-ranking for image retrieval and transductivefew-shot classification" [Paper] [Project webpage]

xshen 29 Dec 06, 2022
PyTorch implementation of SMODICE: Versatile Offline Imitation Learning via State Occupancy Matching

SMODICE: Versatile Offline Imitation Learning via State Occupancy Matching This is the official PyTorch implementation of SMODICE: Versatile Offline I

Jason Ma 14 Aug 30, 2022