ReferFormer - Official Implementation of ReferFormer

Overview

License Framework

PWC PWC

The official implementation of the paper:

Language as Queries for Referring
Video Object Segmentation

Language as Queries for Referring Video Object Segmentation

Jiannan Wu, Yi Jiang, Peize Sun, Zehuan Yuan, Ping Luo

Abstract

In this work, we propose a simple and unified framework built upon Transformer, termed ReferFormer. It views the language as queries and directly attends to the most relevant regions in the video frames. Concretely, we introduce a small set of object queries conditioned on the language as the input to the Transformer. In this manner, all the queries are obligated to find the referred objects only. They are eventually transformed into dynamic kernels which capture the crucial object-level information, and play the role of convolution filters to generate the segmentation masks from feature maps. The object tracking is achieved naturally by linking the corresponding queries across frames. This mechanism greatly simplifies the pipeline and the end-to-end framework is significantly different from the previous methods. Extensive experiments on Ref-Youtube-VOS, Ref-DAVIS17, A2D-Sentences and JHMDB-Sentences show the effectiveness of ReferFormer.

Requirements

We test the codes in the following environments, other versions may also be compatible:

  • CUDA 11.1
  • Python 3.7
  • Pytorch 1.8.1

Installation

Please refer to install.md for installation.

Data Preparation

Please refer to data.md for data preparation.

We provide the pretrained model for different visual backbones. You may download them here and put them in the directory pretrained_weights.

After the organization, we expect the directory struture to be the following:

ReferFormer/
├── data/
│   ├── ref-youtube-vos/
│   ├── ref-davis/
│   ├── a2d_sentences/
│   ├── jhmdb_sentences/
├── davis2017/
├── datasets/
├── models/
├── scipts/
├── tools/
├── util/
├── pretrained_weights/
├── eval_davis.py
├── main.py
├── engine.py
├── inference_ytvos.py
├── inference_davis.py
├── opts.py
...

Model Zoo

All the models are trained using 8 NVIDIA Tesla V100 GPU. You may change the --backbone parameter to use different backbones (see here).

Note: If you encounter the OOM error, please add the command --use_checkpoint (we add this command for Swin-L, Video-Swin-S and Video-Swin-B models).

Ref-Youtube-VOS

To evaluate the results, please upload the zip file to the competition server.

Backbone J&F CFBI J&F Pretrain Model Submission CFBI Submission
ResNet-50 55.6 59.4 weight model link link
ResNet-101 57.3 60.3 weight model link link
Swin-T 58.7 61.2 weight model link link
Swin-L 62.4 63.3 weight model link link
Video-Swin-T* 55.8 - - model link -
Video-Swin-T 59.4 - weight model link -
Video-Swin-S 60.1 - weight model link -
Video-Swin-B 62.9 - weight model link -

* indicates the model is trained from scratch.

Ref-DAVIS17

As described in the paper, we report the results using the model trained on Ref-Youtube-VOS without finetune.

Backbone J&F J F Model
ResNet-50 58.5 55.8 61.3 model
Swin-L 60.5 57.6 63.4 model
Video-Swin-B 61.1 58.1 64.1 model

A2D-Sentences

The pretrained models are the same as those provided for Ref-Youtube-VOS.

Backbone Overall IoU Mean IoU mAP Pretrain Model
Video-Swin-T 77.6 69.6 52.8 weight model | log
Video-Swin-S 77.7 69.8 53.9 weight model | log
Video-Swin-B 78.6 70.3 55.0 weight model | log

JHMDB-Sentences

As described in the paper, we report the results using the model trained on A2D-Sentences without finetune.

Backbone Overall IoU Mean IoU mAP Model
Video-Swin-T 71.9 71.0 42.2 model
Video-Swin-S 72.8 71.5 42.4 model
Video-Swin-B 73.0 71.8 43.7 model

Get Started

Please see Ref-Youtube-VOS, Ref-DAVIS17, A2D-Sentences and JHMDB-Sentences for details.

Acknowledgement

This repo is based on Deformable DETR and VisTR. We also refer to the repositories MDETR and MTTR. Thanks for their wonderful works.

Citation

@article{wu2022referformer,
      title={Language as Queries for Referring Video Object Segmentation}, 
      author={Jiannan Wu and Yi Jiang and Peize Sun and Zehuan Yuan and Ping Luo},
      journal={arXiv preprint arXiv:2201.00487},
      year={2022},
}
Owner
Jonas Wu
The University of Hong Kong. PhD Candidate. Computer Vision.
Jonas Wu
This code is an implementation for Singing TTS.

MLP Singer This code is an implementation for Singing TTS. The algorithm is based on the following papers: Tae, J., Kim, H., & Lee, Y. (2021). MLP Sin

Heejo You 22 Dec 23, 2022
This repository contains datasets and baselines for benchmarking Chinese text recognition.

Benchmarking-Chinese-Text-Recognition This repository contains datasets and baselines for benchmarking Chinese text recognition. Please see the corres

FudanVI Lab 254 Dec 30, 2022
3D2Unet: 3D Deformable Unet for Low-Light Video Enhancement (PRCV2021)

3DDUNET This is the code for 3D2Unet: 3D Deformable Unet for Low-Light Video Enhancement (PRCV2021) Conference Paper Link Dataset We use SMOID dataset

1 Jan 07, 2022
Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt Verbalizer for Text Classification

Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt Verbalizer for Text Classification

DingDing 143 Jan 01, 2023
An implementation of Deep Forest 2021.2.1.

Deep Forest (DF) 21 DF21 is an implementation of Deep Forest 2021.2.1. It is designed to have the following advantages: Powerful: Better accuracy than

LAMDA Group, Nanjing University 795 Jan 03, 2023
Attendance Monitoring with Face Recognition using Python

Attendance Monitoring with Face Recognition using Python A python GUI integrated attendance system using face recognition to take attendance. In this

Vaibhav Rajput 2 Jun 21, 2022
Generate Contextual Directory Wordlist For Target Org

PathPermutor Generate Contextual Directory Wordlist For Target Org This script generates contextual wordlist for any target org based on the set of UR

8 Jun 23, 2021
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Dec 29, 2022
Official PyTorch implementation of the NeurIPS 2021 paper StyleGAN3

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Eugenio Herrera 92 Nov 18, 2022
Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning.

xTune Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning. Environment DockerFile: dancingsoul/pytorch:xTune Install the f

Bo Zheng 42 Dec 09, 2022
Official codebase for "B-Pref: Benchmarking Preference-BasedReinforcement Learning" contains scripts to reproduce experiments.

B-Pref Official codebase for B-Pref: Benchmarking Preference-BasedReinforcement Learning contains scripts to reproduce experiments. Install conda env

48 Dec 20, 2022
Learning Features with Parameter-Free Layers (ICLR 2022)

Learning Features with Parameter-Free Layers (ICLR 2022) Dongyoon Han, YoungJoon Yoo, Beomyoung Kim, Byeongho Heo | Paper NAVER AI Lab, NAVER CLOVA Up

NAVER AI 65 Dec 07, 2022
Few-shot NLP benchmark for unified, rigorous eval

FLEX FLEX is a benchmark and framework for unified, rigorous few-shot NLP evaluation. FLEX enables: First-class NLP support Support for meta-training

AI2 85 Dec 03, 2022
Temporal Knowledge Graph Reasoning Triggered by Memories

MTDM Temporal Knowledge Graph Reasoning Triggered by Memories To alleviate the time dependence, we propose a memory-triggered decision-making (MTDM) n

4 Sep 25, 2022
This repository stores the code to reproduce the results published in "TiWS-iForest: Isolation Forest in Weakly Supervised and Tiny ML scenarios"

TinyWeaklyIsolationForest This repository stores the code to reproduce the results published in "TiWS-iForest: Isolation Forest in Weakly Supervised a

2 Mar 21, 2022
A fast, dataset-agnostic, deep visual search engine for digital art history

imgs.ai imgs.ai is a fast, dataset-agnostic, deep visual search engine for digital art history based on neural network embeddings. It utilizes modern

Fabian Offert 5 Dec 14, 2022
Pytorch implementation of Compressive Transformers, from Deepmind

Compressive Transformer in Pytorch Pytorch implementation of Compressive Transformers, a variant of Transformer-XL with compressed memory for long-ran

Phil Wang 118 Dec 01, 2022
Website which uses Deep Learning to generate horror stories.

Creepypasta - Text Generator Website which uses Deep Learning to generate horror stories. View Demo · View Website Repo · Report Bug · Request Feature

Dhairya Sharma 5 Oct 14, 2022
Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic Scenes", ICCV 2021.

Deep 3D Mask Volume for View Synthesis of Dynamic Scenes Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic S

Ken Lin 17 Oct 12, 2022
Pytorch implementation of Nueral Style transfer

Nueral Style Transfer Pytorch implementation of Nueral style transfer algorithm , it is used to apply artistic styles to content images . Content is t

Abhinav 9 Oct 15, 2022