SimDeblur is a simple framework for image and video deblurring, implemented by PyTorch

Overview

SimDeblur

SimDeblur (Simple Deblurring) is an open source framework for image and video deblurring toolbox based on PyTorch, which contains most deep-learning based state-of-the-art deblurring algorithms. It is easy to implement your own image or video deblurring or other restoration algorithms.

Major features

  • Modular Design

The toolbox decomposes the deblurring framework into different components and one can easily construct a customized restoration framework by combining different modules.

  • State of the art

The toolbox contains most deep-learning based state-of-the-art deblurring algorithms, including MSCNN, SRN, DeblurGAN, EDVR, etc.

  • Distributed Training

New Features

[2021/3/31] support DVD, GoPro and REDS video deblurring datasets. [2021/3/21] first release.

Surpported Methods and Benchmarks

Dependencies and Installation

  • Python 3 (Conda is recommended)
  • Pytorch 1.5.1 (with GPU)
  • CUDA 10.2+
  1. Clone the repositry or download the zip file
     git clone https://github.com/ljzycmd/SimDeblur.git
    
  2. Install SimDeblur
    # create a pytorch env
    conda create -n simdeblur python=3.7
    conda activate simdeblur   
    # install the packages
    cd SimDeblur
    bash Install.sh

Usage

1 Start with trainer

You can construct a simple training process use the default trainer like following:

from simdeblur.config import build_config, merge_args
from simdeblur.engine.parse_arguments import parse_arguments
from simdeblur.engine.trainer import Trainer


args = parse_arguments()

cfg = build_config(args.config_file)
cfg = merge_args(cfg, args)
cfg.args = args

trainer = Trainer(cfg)
trainer.train()

Then start training with single GPU:

CUDA_VISIBLE_DEVICES=0 bash ./tools/train.sh ./config/dbn/dbn_dvd.yaml 1

multi GPU training:

CUDA_VISIBLE_DEVICES=0,1,2,3 bash ./tools/train.sh ./config/dbn/dbn_dvd.yaml 4

2 Build each module

The SimDeblur also provides you to build each module. build the a dataset:

from easydict import EasyDict as edict
from simdeblur.dataset import build_dataset

dataset = build_dataset(edict({
    "name": "DVD",
    "mode": "train",
    "sampling": "n_c",
    "overlapping": True,
    "interval": 1,
    "root_gt": "./dataset/DVD/quantitative_datasets",
    "num_frames": 5,
    "augmentation": {
        "RandomCrop": {
            "size": [256, 256] },
        "RandomHorizontalFlip": {
            "p": 0.5 },
        "RandomVerticalFlip": {
            "p": 0.5 },
        "RandomRotation90": {
            "p": 0.5 },
    }
}))

print(dataset[0])

build the model:

from simdeblur.model import build_backbone

model = build_backbone({
    "name": "DBN",
    "num_frames": 5,
    "in_channels": 3,
    "inner_channels": 64
})

x = torch.randn(1, 5, 3, 256, 256)
out = model(x)

build the loss:

from simdeblur.model import build_loss

criterion = build_loss({
    "name": "MSELoss",
})
x = torch.randn(2, 3, 256, 256)
y = torch.randn(2, 3, 256, 256)
print(criterion(x, y))

And the optimizer and lr_scheduler also can be created by "build_optimizer" and "build_lr_scheduler" etc.

Dataset Description

Click here for more information.

Acknowledgment

[1] facebookresearch. detectron2. https://github.com/facebookresearch/detectron2

[2] subeeshvasu. Awesome-Deblurring. https://github.com/subeeshvasu/Awesome-Deblurring

Citations

If SimDeblur helps your research or work, please consider citing SimDeblur.

@misc{cao2021simdeblur,
  author =       {Mingdeng Cao},
  title =        {SimDeblur},
  howpublished = {\url{https://github.com/ljzycmd/SimDeblur}},
  year =         {2021}
}

If you have any question, please contact me at mingdengcao AT gmail.com.

Transformer Tracking (CVPR2021)

TransT - Transformer Tracking [CVPR2021] Official implementation of the TransT (CVPR2021) , including training code and trained models. We are revisin

chenxin 465 Jan 06, 2023
Official code for paper "ISNet: Costless and Implicit Image Segmentation for Deep Classifiers, with Application in COVID-19 Detection"

Official code for paper "ISNet: Costless and Implicit Image Segmentation for Deep Classifiers, with Application in COVID-19 Detection". LRPDenseNet.py

Pedro Ricardo Ariel Salvador Bassi 2 Sep 21, 2022
This repository contains the code for the paper ``Identifiable VAEs via Sparse Decoding''.

Sparse VAE This repository contains the code for the paper ``Identifiable VAEs via Sparse Decoding''. Data Sources The datasets used in this paper wer

Gemma Moran 17 Dec 12, 2022
Implementation for "Manga Filling Style Conversion with Screentone Variational Autoencoder" (SIGGRAPH ASIA 2020 issue)

Manga Filling with ScreenVAE SIGGRAPH ASIA 2020 | Project Website | BibTex This repository is for ScreenVAE introduced in the following paper "Manga F

30 Dec 24, 2022
DeepMReye: magnetic resonance-based eye tracking using deep neural networks

DeepMReye: magnetic resonance-based eye tracking using deep neural networks

73 Dec 21, 2022
Attentive Implicit Representation Networks (AIR-Nets)

Attentive Implicit Representation Networks (AIR-Nets) Preprint | Supplementary | Accepted at the International Conference on 3D Vision (3DV) teaser.mo

29 Dec 07, 2022
Adaptive Attention Span for Reinforcement Learning

Adaptive Transformers in RL Official implementation of Adaptive Transformers in RL In this work we replicate several results from Stabilizing Transfor

100 Nov 15, 2022
Chatbot in 200 lines of code using TensorLayer

Seq2Seq Chatbot This is a 200 lines implementation of Twitter/Cornell-Movie Chatbot, please read the following references before you read the code: Pr

TensorLayer Community 820 Dec 17, 2022
PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021)

PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021) This repo presents PyTorch implementation of M

Evgeny 79 Dec 19, 2022
Unofficial implementation (replicates paper results!) of MINER: Multiscale Implicit Neural Representations in pytorch-lightning

MINER_pl Unofficial implementation of MINER: Multiscale Implicit Neural Representations in pytorch-lightning. 📖 Ref readings Laplacian pyramid explan

AI葵 51 Nov 28, 2022
[MICCAI'20] AlignShift: Bridging the Gap of Imaging Thickness in 3D Anisotropic Volumes

AlignShift NEW: Code for our new MICCAI'21 paper "Asymmetric 3D Context Fusion for Universal Lesion Detection" will also be pushed to this repository

Medical 3D Vision 42 Jan 06, 2023
Using NumPy to solve the equations of fluid mechanics together with Finite Differences, explicit time stepping and Chorin's Projection methods

Computational Fluid Dynamics in Python Using NumPy to solve the equations of fluid mechanics 🌊 🌊 🌊 together with Finite Differences, explicit time

Felix Köhler 4 Nov 12, 2022
Convert Pytorch model to onnx or tflite, and the converted model can be visualized by Netron

Convert Pytorch model to onnx or tflite, and the converted model can be visualized by Netron

Roxbili 5 Nov 19, 2022
Learning to Self-Train for Semi-Supervised Few-Shot

Learning to Self-Train for Semi-Supervised Few-Shot Classification This repository contains the TensorFlow implementation for NeurIPS 2019 Paper "Lear

86 Dec 29, 2022
Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators..

ARAPReg Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators.. Installation The cod

Bo Sun 132 Nov 28, 2022
Angora is a mutation-based fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without symbolic execution.

Angora Angora is a mutation-based coverage guided fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without s

833 Jan 07, 2023
Time Series Forecasting with Temporal Fusion Transformer in Pytorch

Forecasting with the Temporal Fusion Transformer Multi-horizon forecasting often contains a complex mix of inputs – including static (i.e. time-invari

Nicolás Fornasari 6 Jan 24, 2022
Official implementation of the paper Vision Transformer with Progressive Sampling, ICCV 2021.

Vision Transformer with Progressive Sampling This is the official implementation of the paper Vision Transformer with Progressive Sampling, ICCV 2021.

yuexy 123 Jan 01, 2023
Pyramid Grafting Network for One-Stage High Resolution Saliency Detection. CVPR 2022

PGNet Pyramid Grafting Network for One-Stage High Resolution Saliency Detection. CVPR 2022, CVPR 2022 (arXiv 2204.05041) Abstract Recent salient objec

CVTEAM 109 Dec 05, 2022
Source code for CIKM 2021 paper for Relation-aware Heterogeneous Graph for User Profiling

RHGN Source code for CIKM 2021 paper for Relation-aware Heterogeneous Graph for User Profiling Dependencies torch==1.6.0 torchvision==0.7.0 dgl==0.7.1

Big Data and Multi-modal Computing Group, CRIPAC 6 Nov 29, 2022