DI-smartcross - Decision Intelligence Platform for Traffic Crossing Signal Control

Overview

DI-smartcross

icon

DI-smartcross - Decision Intelligence Platform for Traffic Crossing Signal Control.

DI-smartcross is application platform under OpenDILab

Instruction

DI-smartcross is an open-source traffic crossing signal control platform. DI-smartcross applies several Reinforcement Learning policies training & evaluation for traffic signal control system in provided road nets.

DI-smartcross uses DI-engine, a Reinforcement Learning platform to build RL experiments. DI-smartcross uses SUMO (Simulation of Urban MObility) traffic simulator package to run signal control simulation.

DI-smartcross supports:

  • Single-Agent and Multi-Agent Reinforcement Learning
  • Synthetic and Real roadnet, Arterial and Grid network shape
  • Customizable observation, action and reward types
  • Easily achieve Multi-Environment Parallel, Actor-Learner Asynchronous Parallel when training with DI-engine

Installation

DI-smartcross supports SUMO version >= 1.6.0. Here we show an easy guide of installation with SUMO 1.8.0 on Linux.

Install sumo

  1. install required libraries and dependencies
sudo apt-get install cmake python g++ libxerces-c-dev libfox-1.6-dev libgdal-dev libproj-dev libgl2ps-dev swig
  1. download and unzip the installation package
tar xzf sumo-src-1.8.0.tar.gz
cd sumo-1.8.0
pwd 
  1. compile sumo
mkdir build/cmake-build
cd build/cmake-build
cmake ../..
make -j $(nproc)
  1. environment variables
echo 'export PATH=$HOME/sumo-1.8.0/bin:$PATH
export SUMO_HOME=$HOME/sumo-1.8.0' | tee -a $HOME/.bashrc
source ~/.bashrc
  1. check install
sumo

If success, the following message will be shown in the shell.

Eclipse SUMO sumo Version 1.8.0
  Build features: Linux-3.10.0-957.el7.x86_64 x86_64 GNU 5.3.1 Release Proj GUI SWIG GDAL GL2PS
  Copyright (C) 2001-2020 German Aerospace Center (DLR) and others; https://sumo.dlr.de
  License EPL-2.0: Eclipse Public License Version 2 <https://eclipse.org/legal/epl-v20.html>
  Use --help to get the list of options.

Install DI-smartcross

To install DI-smartcross, simply run pip install in the root folder of this repository. This will automatically insall DI-engine as well.

pip install -e . --user

Quick Start

Run training and evaluation

DI-smartcross supports DQN, Off-policy PPO and Rainbow DQN RL methods with multi-discrete actions for each crossing. A set of default DI-engine configs is provided for each policy. You can check the document of DI-engine to get detail instructions of these configs.

  • train RL policies
usage: sumo_train [-h] -d DING_CFG -e ENV_CFG [-s SEED] [--dynamic-flow]
                  [-cn COLLECT_ENV_NUM] [-en EVALUATE_ENV_NUM]
                  [--exp-name EXP_NAME]

DI-smartcross training script

optional arguments:
  -h, --help            show this help message and exit
  -d DING_CFG, --ding-cfg DING_CFG
                        DI-engine configuration path
  -e ENV_CFG, --env-cfg ENV_CFG
                        sumo environment configuration path
  -s SEED, --seed SEED  random seed for sumo
  --dynamic-flow        use dynamic route flow
  -cn COLLECT_ENV_NUM, --collect-env-num COLLECT_ENV_NUM
                        collector sumo env num for training
  -en EVALUATE_ENV_NUM, --evaluate-env-num EVALUATE_ENV_NUM
                        evaluator sumo env num for training
  --exp-name EXP_NAME   experiment name to save log and ckpt

Example of running DQN in wj3 env with default config.

sumo_train -e smartcross/envs/sumo_arterial_wj3_default_config.yaml -d entry/config/sumo_wj3_dqn_default_config.py
  • evaluate existing policies
usage: sumo_eval [-h] [-d DING_CFG] -e ENV_CFG [-s SEED]
                 [-p {random,fix,dqn,rainbow,ppo}] [--dynamic-flow]
                 [-n ENV_NUM] [--gui] [-c CKPT_PATH]

DI-smartcross training script

optional arguments:
  -h, --help            show this help message and exit
  -d DING_CFG, --ding-cfg DING_CFG
                        DI-engine configuration path
  -e ENV_CFG, --env-cfg ENV_CFG
                        sumo environment configuration path
  -s SEED, --seed SEED  random seed for sumo
  -p {random,fix,dqn,rainbow,ppo}, --policy-type {random,fix,dqn,rainbow,ppo}
                        RL policy type
  --dynamic-flow        use dynamic route flow
  -n ENV_NUM, --env-num ENV_NUM
                        sumo env num for evaluation
  --gui                 open gui for visualize
  -c CKPT_PATH, --ckpt-path CKPT_PATH
                        model ckpt path

Example of running random policy in wj3 env.

sumo_eval -p random -e smartcross/envs/sumo_arterial_wj3_default_config.yaml     

Environments

sumo env configuration

The configuration of sumo env is stored in a config .yaml file. You can take a look at the default config file to see how to modify env settings.

import yaml
from easy_dict import EasyDict
from smartcross.env import SumoEnv

with open('smartcross/envs/sumo_arterial_wj3_default_config.yaml') as f:
    cfg = yaml.safe_load(f)
cfg = EasyDict(cfg)
env = SumoEnv(config=cfg.env)

The env configuration consists of basic definition and observation\action\reward settings. The basic definition includes the cumo config file, episode length and light duration. The obs\action\reward define the detail setting of each contains.

env:
    sumocfg_path: 'arterial_wj3/rl_wj.sumocfg'
    max_episode_steps: 1500
    green_duration: 10
    yellow_duration: 3
    obs:
        ...
    action:
        ...
    reward:
        ...

Observation

We provide several types of observations of a traffic cross. If use_centrolized_obs is set True, the observation of each cross will be concatenated into one vector. The contents of observation can me modified by setting obs_type. The following observation is supported now.

  • phase: One-hot phase vector of current cross signal
  • lane_pos_vec: Lane occupancy in each grid position. The grid num can be set with lane_grid_num
  • traffic_volumn: Traffic volumn of each lane. Vehicle num / lane length * volumn ratio
  • queue_len: Vehicle waiting queue length of each lane. Waiting num / lane length * volumn ratio

Action

Sumo environment supports changing cross signal to target phase. The action space is set to multi-discrete for each cross to reduce action num.

Reward

Reward can be set with reward_type. Reward is calculated cross by cross. If use_centrolized_obs is set True, the reward of each cross will be summed up.

  • queue_len: Vehicle waiting queue num of each lane
  • wait_time: Wait time increment of vehicles in each lane
  • delay_time: Delay time of all vahicles in incomming and outgoing lanes
  • pressure: Pressure of a cross

Contributing

We appreciate all contributions to improve DI-smartcross, both algorithms and system designs.

License

DI-smartcross released under the Apache 2.0 license.

Citation

@misc{smartcross,
    title={{DI-smartcross: OpenDILab} Decision Intelligence platform for Traffic Crossing Signal Control},
    author={DI-smartcross Contributors},
    publisher = {GitHub},
    howpublished = {\url{`https://github.com/opendilab/DI-smartcross`}},
    year={2021},
}
Comments
  • style(hus): update email address

    style(hus): update email address

    Description

    Related Issue

    TODO

    Check List

    • [ ] merge the latest version source branch/repo, and resolve all the conflicts
    • [ ] pass style check
    • [ ] pass all the tests
    opened by TuTuHuss 0
  • update and fix typo in docs

    update and fix typo in docs

    Description

    Related Issue

    TODO

    Check List

    • [ ] merge the latest version source branch/repo, and resolve all the conflicts
    • [ ] pass style check
    • [ ] pass all the tests
    opened by RobinC94 0
  • update envs, docs and actions

    update envs, docs and actions

    Description

    Related Issue

    TODO

    Check List

    • [ ] merge the latest version source branch/repo, and resolve all the conflicts
    • [ ] pass style check
    • [ ] pass all the tests
    opened by RobinC94 0
  • Dev

    Dev

    Description

    Related Issue

    TODO

    Check List

    • [ ] merge the latest version source branch/repo, and resolve all the conflicts
    • [ ] pass style check
    • [ ] pass all the tests
    opened by RobinC94 0
  • Merge branch 'main' into dev

    Merge branch 'main' into dev

    Description

    None

    Related Issue

    TODO

    Check List

    • [ ] merge the latest version source branch/repo, and resolve all the conflicts
    • [ ] pass style check
    • [ ] pass all the tests
    opened by RobinC94 0
  • update readme

    update readme

    Description

    Related Issue

    TODO

    Check List

    • [ ] merge the latest version source branch/repo, and resolve all the conflicts
    • [ ] pass style check
    • [ ] pass all the tests
    opened by RobinC94 0
  • suit for 0.3.0

    suit for 0.3.0

    Description

    Related Issue

    TODO

    Check List

    • [ ] merge the latest version source branch/repo, and resolve all the conflicts
    • [ ] pass style check
    • [ ] pass all the tests
    opened by RobinC94 0
  • v0.1.0 update

    v0.1.0 update

    Description

    add cityflow env suit ding 0.3

    Related Issue

    TODO

    Check List

    • [ ] merge the latest version source branch/repo, and resolve all the conflicts
    • [ ] pass style check
    • [ ] pass all the tests
    opened by RobinC94 0
  • Dev: Version 0.0.1

    Dev: Version 0.0.1

    Description

    Related Issue

    TODO

    Check List

    • [ ] merge the latest version source branch/repo, and resolve all the conflicts
    • [ ] pass style check
    • [ ] pass all the tests
    opened by RobinC94 0
  • Dev: update obs helper, mappo; update configs

    Dev: update obs helper, mappo; update configs

    Description

    update obs helper, mappo; add arterial7; update configs

    Related Issue

    TODO

    Check List

    • [ ] merge the latest version source branch/repo, and resolve all the conflicts
    • [ ] pass style check
    • [ ] pass all the tests
    opened by RobinC94 0
  • add different settings for ppo

    add different settings for ppo

    Description

    Related Issue

    TODO

    Check List

    • [ ] merge the latest version source branch/repo, and resolve all the conflicts
    • [ ] pass style check
    • [ ] pass all the tests
    opened by kxzxvbk 0
Releases(v0.1.0)
Owner
OpenDILab
Open sourced Decision Intelligence (DI)
OpenDILab
Pytorch Lightning Implementation of SC-Depth Methods.

SC_Depth_pl: This is a pytorch lightning implementation of SC-Depth (V1, V2) for self-supervised learning of monocular depth from video. In the V1 (IJ

JiaWang Bian 216 Dec 30, 2022
A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval

CLIP4CMR A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval The original data and pre-calculate

24 Dec 26, 2022
Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021)

Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021) Alexey Nekrasov*, Jonas Schult*, Or Litany, Bastian Leibe, Francis Engelmann Mix3D is

Alexey Nekrasov 189 Dec 26, 2022
This repo contains implementation of different architectures for emotion recognition in conversations.

Emotion Recognition in Conversations Updates 🔥 🔥 🔥 Date Announcements 03/08/2021 🎆 🎆 We have released a new dataset M2H2: A Multimodal Multiparty

Deep Cognition and Language Research (DeCLaRe) Lab 1k Dec 30, 2022
Graph-based community clustering approach to extract protein domains from a predicted aligned error matrix

Using a predicted aligned error matrix corresponding to an AlphaFold2 model , returns a series of lists of residue indices, where each list corresponds to a set of residues clustering together into a

Tristan Croll 24 Nov 23, 2022
Citation Intent Classification in scientific papers using the Scicite dataset an Pytorch

Citation Intent Classification Table of Contents About the Project Built With Installation Usage Acknowledgments About The Project Citation Intent Cla

Federico Nocentini 4 Mar 04, 2022
A Comparative Framework for Multimodal Recommender Systems

Cornac Cornac is a comparative framework for multimodal recommender systems. It focuses on making it convenient to work with models leveraging auxilia

Preferred.AI 671 Jan 03, 2023
Second-order Attention Network for Single Image Super-resolution (CVPR-2019)

Second-order Attention Network for Single Image Super-resolution (CVPR-2019) "Second-order Attention Network for Single Image Super-resolution" is pub

516 Dec 28, 2022
Training, generation, and analysis code for Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics

Location-Aware Generative Adversarial Networks (LAGAN) for Physics Synthesis This repository contains all the code used in L. de Oliveira (@lukedeo),

Deep Learning for HEP 57 Oct 22, 2022
AgeGuesser: deep learning based age estimation system. Powered by EfficientNet and Yolov5

AgeGuesser AgeGuesser is an end-to-end, deep-learning based Age Estimation system, presented at the CAIP 2021 conference. You can find the related pap

5 Nov 10, 2022
This repository provides the official implementation of 'Learning to ignore: rethinking attention in CNNs' accepted in BMVC 2021.

inverse_attention This repository provides the official implementation of 'Learning to ignore: rethinking attention in CNNs' accepted in BMVC 2021. Le

Firas Laakom 5 Jul 08, 2022
This program writes christmas wish programmatically. It is using turtle as a pen pointer draw christmas trees and stars.

Introduction This is a simple program is written in python and turtle library. The objective of this program is to wish merry Christmas programmatical

Gunarakulan Gunaretnam 1 Dec 25, 2021
Unbalanced Feature Transport for Exemplar-based Image Translation (CVPR 2021)

UNITE and UNITE+ Unbalanced Feature Transport for Exemplar-based Image Translation (CVPR 2021) Unbalanced Intrinsic Feature Transport for Exemplar-bas

Fangneng Zhan 183 Nov 09, 2022
Image Super-Resolution by Neural Texture Transfer

SRNTT: Image Super-Resolution by Neural Texture Transfer Tensorflow implementation of the paper Image Super-Resolution by Neural Texture Transfer acce

Zhifei Zhang 413 Nov 30, 2022
Mae segmentation - Reproduction of semantic segmentation using masked autoencoder (mae)

ADE20k Semantic segmentation with MAE Getting started Install the mmsegmentation

97 Dec 17, 2022
This is an open source library implementing hyperbox-based machine learning algorithms

hyperbox-brain is a Python open source toolbox implementing hyperbox-based machine learning algorithms built on top of scikit-learn and is distributed

Complex Adaptive Systems (CAS) Lab - University of Technology Sydney 21 Dec 14, 2022
Visualize Camera's Pose Using Extrinsic Parameter by Plotting Pyramid Model on 3D Space

extrinsic2pyramid Visualize Camera's Pose Using Extrinsic Parameter by Plotting Pyramid Model on 3D Space Intro A very simple and straightforward modu

JEONG HYEONJIN 106 Dec 28, 2022
Data augmentation for NLP, accepted at EMNLP 2021 Findings

AEDA: An Easier Data Augmentation Technique for Text Classification This is the code for the EMNLP 2021 paper AEDA: An Easier Data Augmentation Techni

Akbar Karimi 81 Dec 09, 2022
Realistic lighting in ursina!

Ursina Lighting Realistic lighting in ursina! If you want to have realistic lighting in ursina, import the UrsinaLighting.py in your project and use t

17 Jul 07, 2022
SiT: Self-supervised vIsion Transformer

This repository contains the official PyTorch self-supervised pretraining, finetuning, and evaluation codes for SiT (Self-supervised image Transformer).

Sara Ahmed 275 Dec 28, 2022