Image Super-Resolution by Neural Texture Transfer

Related tags

Deep LearningSRNTT
Overview

SRNTT: Image Super-Resolution by Neural Texture Transfer

Tensorflow implementation of the paper Image Super-Resolution by Neural Texture Transfer accepted in CVPR 2019. This is a simplified version, where the reference images are used without augmentation, e.g., rotation and scaling.

Project Page

Pytorch Implementation

Contents

Pre-requisites

  • Python 3.6
  • TensorFlow 1.13.1
  • requests 2.21.0
  • pillow 5.4.1
  • matplotlib 3.0.2

Tested on MacOS (Mojave).

Dataset

This repo only provides a small training set of ten input-reference pairs for demo purpose. The input images and reference images are stored in data/train/CUFED/input and data/train/CUFED/ref, respectively. Corresponding input and refernece images are with the same file name. To speed up the training process, patch matching and swapping are performed offline, and the swapped feature maps will be saved to data/train/CUFED/map_321 (see offline_patchMatch_textureSwap.py for more details). If you want to train your own model, please prepare your own training set or download either of the following demo training sets:

11,485 input-reference pairs (size 320x320) extracted from DIV2K.

Each pair is extracted from the same image without overlap but considering scaling and rotation.

$ python download_dataset.py --dataset_name DIV2K
11,871 input-reference pairs (size 160x160) extracted from CUFED.

Each pair is extracted from the similar images, including five degrees of similarity.

$ python download_dataset.py --dataset_name CUFED

This repo includes one grounp of samples from the CUFED5 dataset, where each input image corresponds to five reference images (different from the paper) with different degrees of similarity to the input image. Please download the full dataset by

$ python download_dataset.py --dataset_name CUFED5

Easy Testing

$ sh test.sh

The results will be save to the folder demo_testing_srntt, including the following 6 images:

  • [1/6] HR.png, the original image.

    Original image

  • [2/6] LR.png, the low-resolution (LR) image, downscaling factor 4x.

    LR image

  • [3/6] Bicubic.png, the upscaled image by bicubic interpolation, upscaling factor 4x.

    Bicubic image

  • [4/6] Ref_XX.png, the reference images, indexed by XX.

    Reference image

  • [5/6] Upscale.png, the upscaled image by a pre-trained SR network, upscaling factor 4x.

    Upscaled image

  • [6/6] SRNTT.png, the SR result by SRNTT, upscaling factor 4x.

    Upscaled image

Custom Testing

$ python main.py 
    --is_train              False 
    --input_dir             path/to/input/image/file
    --ref_dir               path/to/ref/image/file
    --result_dir            path/to/result/folder
    --ref_scale             default 1, expected_ref_scale divided by original_ref_scale
    --is_original_image     default True, whether input is original 
    --use_init_model_only   default False, whether use init model, trained with reconstruction loss only
    --use_weight_map        defualt False, whether use weighted model, trained with the weight map.
    --save_dir              path/to/a/specified/model if it exists, otherwise ignor this parameter

Please note that this repo provides two types of pre-trained SRNTT models in SRNTT/models/SRNTT:

  • srntt.npz is trained by all losses, i.e., reconstruction loss, perceptual loss, texture loss, and adversarial loss.
  • srntt_init.npz is trained by only the reconstruction loss, corresponding to SRNTT-l2 in the paper.

To switch between the demo models, please set --use_init_model_only to decide whether use srntt_init.npz.

Easy Training

$ sh train.sh

The CUFED training set will be downloaded automatically. To speed up the training process, patch matching and swapping are conducted to get the swapped feature maps in an offline manner. The models will be saved to demo_training_srntt/model, and intermediate samples will be saved to demo_training_srntt/sample. Parameter settings are save to demo_training_srntt/arguments.txt.

Custom Training

Please first prepare the input and reference images which are squared patches in the same size. In addition, input and reference images should be stored in separated folders, and the correspoinding input and reference images are with the same file name. Please refer to the data/train/CUFED folder for examples. Then, use offline_patchMatch_textureSwap.py to generate the feature maps in ahead.

$ python main.py
    --is_train True
    --save_dir folder/to/save/models
    --input_dir path/to/input/image/folder
    --ref_dir path/to/ref/image/folder
    --map_dir path/to/feature_map/folder
    --batch_size default 9
    --num_epochs default 100
    --input_size default 40, the size of LR patch, i.e., 1/4 of the HR image, set to 80 for the DIV2K dataset
    --use_weight_map defualt False, whether use the weight map that reduces negative effect 
                     from the reference image but may also decrease the sharpness.  

Please refer to main.py for more parameter settings for training.

Test on the custom training model

$ python main.py 
    --is_train              False 
    --input_dir             path/to/input/image/file
    --ref_dir               path/to/ref/image/file
    --result_dir            path/to/result/folder
    --ref_scale             default 1, expected_ref_scale divided by original_ref_scale
    --is_original_image     default True, whether input is original 
    --save_dir              the same as save_dir in training

Acknowledgement

Thanks to Tensorlayer for facilitating the implementation of this demo code. We have include the Tensorlayer 1.5.0 in SRNTT/tensorlayer.

Contact

Zhifei Zhang

Owner
Zhifei Zhang
Zhifei Zhang
Code for the paper: Sketch Your Own GAN

Sketch Your Own GAN Project | Paper | Youtube | Slides Our method takes in one or a few hand-drawn sketches and customizes an off-the-shelf GAN to mat

677 Dec 28, 2022
This repository includes code of my study about Asynchronous in Frequency domain of GAN images.

Exploring the Asynchronous of the Frequency Spectra of GAN-generated Facial Images Binh M. Le & Simon S. Woo, "Exploring the Asynchronous of the Frequ

4 Aug 06, 2022
Official code of Team Yao at Multi-Modal-Fact-Verification-2022

Official code of Team Yao at Multi-Modal-Fact-Verification-2022 A Multi-Modal Fact Verification dataset released as part of the De-Factify workshop in

Wei-Yao Wang 11 Nov 15, 2022
EquiBind: Geometric Deep Learning for Drug Binding Structure Prediction

EquiBind: geometric deep learning for fast predictions of the 3D structure in which a small molecule binds to a protein

Hannes Stärk 355 Jan 03, 2023
Shuwa Gesture Toolkit is a framework that detects and classifies arbitrary gestures in short videos

Shuwa Gesture Toolkit is a framework that detects and classifies arbitrary gestures in short videos

Google 89 Dec 22, 2022
GitHub repository for "Improving Video Generation for Multi-functional Applications"

Improving Video Generation for Multi-functional Applications GitHub repository for "Improving Video Generation for Multi-functional Applications" Pape

Bernhard Kratzwald 328 Dec 07, 2022
GyroSPD: Vector-valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices

GyroSPD Code for the paper "Vector-valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices" accepted at NeurIPS 2021. Re

Federico Lopez 12 Dec 12, 2022
Non-Official Pytorch implementation of "Face Identity Disentanglement via Latent Space Mapping" https://arxiv.org/abs/2005.07728 Using StyleGAN2 instead of StyleGAN

Face Identity Disentanglement via Latent Space Mapping - Implement in pytorch with StyleGAN 2 Description Pytorch implementation of the paper Face Ide

Daniel Roich 58 Dec 24, 2022
SGPT: Multi-billion parameter models for semantic search

SGPT: Multi-billion parameter models for semantic search This repository contains code, results and pre-trained models for the paper SGPT: Multi-billi

Niklas Muennighoff 182 Dec 29, 2022
Implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training

SemCo The official pytorch implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training

42 Nov 14, 2022
Peek-a-Boo: What (More) is Disguised in a Randomly Weighted Neural Network, and How to Find It Efficiently

Peek-a-Boo: What (More) is Disguised in a Randomly Weighted Neural Network, and How to Find It Efficiently This repository is the official implementat

VITA 4 Dec 20, 2022
Efficient Two-Step Networks for Temporal Action Segmentation (Neurocomputing 2021)

Efficient Two-Step Networks for Temporal Action Segmentation This repository provides a PyTorch implementation of the paper Efficient Two-Step Network

8 Apr 16, 2022
Official implementation of NeurIPS'21: Implicit SVD for Graph Representation Learning

isvd Official implementation of NeurIPS'21: Implicit SVD for Graph Representation Learning If you find this code useful, you may cite us as: @inprocee

Sami Abu-El-Haija 16 Jan 08, 2023
[CVPR 2022 Oral] Crafting Better Contrastive Views for Siamese Representation Learning

Crafting Better Contrastive Views for Siamese Representation Learning (CVPR 2022 Oral) 2022-03-29: The paper was selected as a CVPR 2022 Oral paper! 2

249 Dec 28, 2022
VR Viewport Pose Model for Quantifying and Exploiting Frame Correlations

This repository contains the introduction to the collected VRViewportPose dataset and the code for the IEEE INFOCOM 2022 paper: "VR Viewport Pose Model for Quantifying and Exploiting Frame Correlatio

0 Aug 10, 2022
Self Governing Neural Networks (SGNN): the Projection Layer

Self Governing Neural Networks (SGNN): the Projection Layer A SGNN's word projections preprocessing pipeline in scikit-learn In this notebook, we'll u

Guillaume Chevalier 22 Nov 06, 2022
Self-Supervised Learning with Kernel Dependence Maximization

Self-Supervised Learning with Kernel Dependence Maximization This is the code for SSL-HSIC, a self-supervised learning loss proposed in the paper Self

DeepMind 29 Dec 29, 2022
Perform Linear Classification with Multi-way Data

MultiwayClassification This is an R package to perform linear classification for data with multi-way structure. The distance-weighted discrimination (

Eric F. Lock 2 Dec 15, 2020
The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

Website | ArXiv | Get Start | Video PIRenderer The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic

Ren Yurui 261 Jan 09, 2023
Contenido del curso Bases de datos del DCC PUC versión 2021-2

IIC2413 - Bases de Datos Tabla de contenidos Equipo Profesores Ayudantes Contenidos Calendario Evaluaciones Resumen de notas Foro Política de integrid

54 Nov 23, 2022