TSP: Temporally-Sensitive Pretraining of Video Encoders for Localization Tasks

Related tags

Deep LearningTSP
Overview

PWC PWC PWC PWC

TSP: Temporally-Sensitive Pretraining of Video Encoders for Localization Tasks

[Paper] [Project Website]

This repository holds the source code, pretrained models, and pre-extracted features for the TSP method.

Please cite this work if you find TSP useful for your research.

@article{alwassel2020tsp,
  title={TSP: Temporally-Sensitive Pretraining of Video Encoders for Localization Tasks},
  author={Alwassel, Humam and Giancola, Silvio and Ghanem, Bernard},
  journal={arXiv preprint arXiv:2011.11479},
  year={2020}
}

Pre-extracted TSP Features

We provide pre-extracted features for ActivityNet v1.3 and THUMOS14 videos. The feature files are saved in H5 format, where we map each video-name to a features tensor of size N x 512, where N is the number of features and 512 is the feature size. Use h5py python package to read the feature files. Not familiar with H5 files or h5py? here is a quick start guide.

For ActivityNet v1.3 dataset

Download: [train subset] [valid subset] [test subset]

Details: The features are extracted from the R(2+1)D-34 encoder pretrained with TSP on ActivityNet (released model) using clips of 16 frames at a frame rate of 15 fps and a stride of 16 frames (i.e., non-overlapping clips). This gives one feature vector per 16/15 ~= 1.067 seconds.

For THUMOS14 dataset

Download: [valid subset] [test subset]

Details: The features are extracted from the R(2+1)D-34 encoder pretrained with TSP on THUMOS14 (released model) using clips of 16 frames at a frame rate of 15 fps and a stride of 1 frame (i.e., dense overlapping clips). This gives one feature vector per 1/15 ~= 0.067 seconds.

Setup

Clone this repository and create the conda environment.

git clone https://github.com/HumamAlwassel/TSP.git
cd TSP
conda env create -f environment.yml
conda activate tsp

Data Preprocessing

Follow the instructions here to download and preprocess the input data.

Training

We provide training scripts for the TSP models and the TAC baselines here.

Feature Extraction

You can extract features from released pretrained models or from local checkpoints using the scripts here.

Acknowledgment: Our source code borrows implementation ideas from pytorch/vision and facebookresearch/VMZ repositories.

Comments
  • LOSS does not decrease during training

    LOSS does not decrease during training

    My data set is small, 1500 videos, all under 10 seconds in length. The current training results of this model are as follows: 1640047275(1)

    The experimental Settings adopted are: Batch_size=32,FACTOR=2. Is such a situation normal? If it is abnormal, what should be done?

    opened by ZChengLong578 5
  • H5 files generated about GVF features

    H5 files generated about GVF features

    Hi, @HumamAlwassel Thanks for your excellent work and for sharing the code. When I was training my dataset, I read your explanation on GVF feature generation. Do I need to combine .pkl files generated by the training set and valid set into .h5 files when I go to step 3?

    opened by ZChengLong578 5
  • The LOSS value is too large and does not decrease

    The LOSS value is too large and does not decrease

    Hi, @HumamAlwassel, I'm sorry to bother you again. I did it without or very little background (no action). Now I have added more background (no Action), but the LOSS value is very large and does not decrease. The specific situation is shown in the following figure: 3ed8aa4893a75580fc15295ef5acb27 Here are the files for the training set and validation set: 90dbeb733f39c8a64cecf13b03542ba What can I do to solve this problem?

    opened by ZChengLong578 3
  • Use the pretraining model to train other datasets

    Use the pretraining model to train other datasets

    Hi, @HumamAlwassel After downloading the pre-training model as you said, I overwrote the value of epoch to 0. The following changes were then made in the code: 1653905168503 1653905194890 1653905230207 I would like you to take a look, is the change I made in the code correct? Or should I replace the initial tac-on-kinetics Pretrained weights with this instead of using it in the resume?

    opened by ZChengLong578 2
  • Inference unseen video using pretrained model

    Inference unseen video using pretrained model

    Hi @HumamAlwassel, Thanks for your excellent work. I really appreciated it. I've trained your work on my own dataset. However, I am thinking about how to use trained model to inference unseen videos. Could you give me some examples that export result of a video such as action label and its start or end time.

    Best regards,

    opened by t2kien 2
  • Data sampling problems

    Data sampling problems

    Hi, @HumamAlwassel I'm sorry to trouble you again. The duration of my dataset action was short and many partitions were removed, as shown below: 1641360174(1) However, after observation, I find that it does not seem to be the problem with the length of the video. Actions with a length of 0-1.5 seconds are in the video, but actions with a length of 1.5-3 seconds are not in the video. Why is this? 1641360277(1)

    opened by ZChengLong578 2
  •  RuntimeError(f'<UntrimmedVideoDataset>: got clip of length {vframes.shape[0]} != {self.clip_length}.'

    RuntimeError(f': got clip of length {vframes.shape[0]} != {self.clip_length}.'

    Traceback (most recent call last): File "train.py", line 290, in <module> main(args) File "train.py", line 260, in main train_one_epoch(model=model, criterion=criterion, optimizer=optimizer, lr_scheduler=lr_scheduler, File "train.py", line 63, in train_one_epoch for sample in metric_logger.log_every(data_loader, print_freq, header, device=device): File "/media/bruce/2T/projects/TSP/train/../common/utils.py", line 137, in log_every for obj in iterable: File "/home/bruce/anaconda2/envs/tsp/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 345, in __next__ data = self._next_data() File "/home/bruce/anaconda2/envs/tsp/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 856, in _next_data return self._process_data(data) File "/home/bruce/anaconda2/envs/tsp/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 881, in _process_data data.reraise() File "/home/bruce/anaconda2/envs/tsp/lib/python3.8/site-packages/torch/_utils.py", line 394, in reraise raise self.exc_type(msg) RuntimeError: Caught RuntimeError in DataLoader worker process 0. Original Traceback (most recent call last): File "/home/bruce/anaconda2/envs/tsp/lib/python3.8/site-packages/torch/utils/data/_utils/worker.py", line 178, in _worker_loop data = fetcher.fetch(index) File "/home/bruce/anaconda2/envs/tsp/lib/python3.8/site-packages/torch/utils/data/_utils/fetch.py", line 44, in fetch data = [self.dataset[idx] for idx in possibly_batched_index] File "/home/bruce/anaconda2/envs/tsp/lib/python3.8/site-packages/torch/utils/data/_utils/fetch.py", line 44, in <listcomp> data = [self.dataset[idx] for idx in possibly_batched_index] File "/media/bruce/2T/projects/TSP/train/untrimmed_video_dataset.py", line 86, in __getitem__ raise RuntimeError(f'<UntrimmedVideoDataset>: got clip of length {vframes.shape[0]} != {self.clip_length}.' RuntimeError: <UntrimmedVideoDataset>: got clip of length 15 != 16.filename=/mnt/nas/bruce14t/THUMOS14/valid/video_validation_0000420.mp4, clip_t_start=526.7160991305855, clip_t_end=527.7827657972522, fps=30.0, t_start=498.2, t_end=546.9

    I am very impressed by your wonderful work. When I try to reproduce the bash train_tsp_on_thumos14.sh for the THUMOS14 dataset, I got the above data loading issue. The calculation of the start and end of input clips seems not to work well for all the clips (code Line 74-78 of train/untrimmed_video_dataset.py). Could you provide some help with it? Thank you very much in advance.

    opened by bruceyo 2
  • How do I calculate mean and std for a new dataset?

    How do I calculate mean and std for a new dataset?

    Thanks for your inspiring code with detailed explanations! I have learnt a lot from that and now I'm trying to do some experiments in another dataset. But some implementation details confuse me.

    I notice that in the dataset transform part, there is a normalizing step. normalize = T.Normalize(mean=[0.43216, 0.394666, 0.37645], std=[0.22803, 0.22145, 0.216989])

    So how do I calculate the mean and std for a new dataset? Should I extract frames from videos first, then calculate mean & std inside all the frames in all videos for each RGB channel?

    opened by xjtupanda 1
  • Similar to issue #11 getting RuntimeError(f'<UntrimmedVideoDataset>: got clip of length {vframes.shape[0]} != {self.clip_length}.'

    Similar to issue #11 getting RuntimeError(f': got clip of length {vframes.shape[0]} != {self.clip_length}.'

    I am working with ActivityNet-v1.3 data converted to grayscale.

    I followed the preprocessing step highlighted here.

    However, I am still facing this issue similar to #11 , wanted to check if I am missing something or if there are any known fixes.

    Example from the log:

    1. RuntimeError: <UntrimmedVideoDataset>: got clip of length 15 != 16.filename=~/ActivityNet/grayscale_split/train/v_bNuRrXSjJl0.mp4, clip_t_start=227.63093165194988, clip_t_end=228.69759831861654, fps=30.0, t_start=219.1265882558503, t_end=228.7

    2. RuntimeError: <UntrimmedVideoDataset>: got clip of length 13 != 16.filename=~/ActivityNet/grayscale_split/train/v_nTNkGOtp7aQ.mp4, clip_t_start=33.341372258903775, clip_t_end=34.408038925570445, fps=30.0, t_start=25.58139772698908, t_end=34.53333333333333

    3. RuntimeError: <UntrimmedVideoDataset>: got clip of length 1 != 16.filename=~/ActivityNet/grayscale_split/train/v_7Iy7Cjv2SAE.mp4, clip_t_start=190.79558490339477, clip_t_end=191.86225157006143, fps=30.0, t_start=131.42849249141963, t_end=195.0

    Also, is there a recommended way to skip these files instead of raising the issue while training. The above issues came for different runs and at different epochs.

    opened by vc-30 1
  • Accuracy don't increase

    Accuracy don't increase

    Thank you for your reply! I used the above code to train my data set and found that the accuracy rate has not changed much and has remained around 3. Here is the output of the training: image Do you know what caused it?

    opened by ZChengLong578 1
  • question about pretrain-model

    question about pretrain-model

    Hi, thank you for your excellent work. I have a problem with your model. It is extracted TSP Features in ActivityNet. When the objects present in my video are not in ActivityNet, the model fails to recognize. As an example, ActivityNet's animals are only dogs and horses, but when my video is a cat, I run into trouble. I'm guessing because the model hasn't seen cats, one of my solution is to use ImageNet-22k pretrained weights and then do extracted TSP Features in ActivityNet. I don't know if my thinking is right. If it is correct, could you please update your code about using ImageNet-22k pretrained weights? Thank you very much for your excellent work.

    opened by qt2139 1
Releases(thumos14_features)
Owner
Humam Alwassel
PhD Student, Computer Vision Researcher, and Deep Learning "Hacker".
Humam Alwassel
Official code of the paper "Expanding Low-Density Latent Regions for Open-Set Object Detection" (CVPR 2022)

OpenDet Expanding Low-Density Latent Regions for Open-Set Object Detection (CVPR2022) Jiaming Han, Yuqiang Ren, Jian Ding, Xingjia Pan, Ke Yan, Gui-So

csuhan 64 Jan 07, 2023
I3-master-layout - Simple master and stack layout script

Simple master and stack layout script | ------ | ----- | | | | | Ma

Tobias S 18 Dec 05, 2022
An official implementation of the Anchor DETR.

Anchor DETR: Query Design for Transformer-Based Detector Introduction This repository is an official implementation of the Anchor DETR. We encode the

MEGVII Research 276 Dec 28, 2022
Learning cell communication from spatial graphs of cells

ncem Features Repository for the manuscript Fischer, D. S., Schaar, A. C. and Theis, F. Learning cell communication from spatial graphs of cells. 2021

Theis Lab 77 Dec 30, 2022
PyTorch implementation of SQN based on CloserLook3D's encoder

SQN_pytorch This repo is an implementation of Semantic Query Network (SQN) using CloserLook3D's encoder in Pytorch. For TensorFlow implementation, che

PointCloudYC 1 Oct 21, 2021
This repository contains the scripts for downloading and validating scripts for the documents

HC4: HLTCOE CLIR Common-Crawl Collection This repository contains the scripts for downloading and validating scripts for the documents. Document ids,

JHU Human Language Technology Center of Excellence 6 Jun 07, 2022
PyTorch implementation of deep GRAph Contrastive rEpresentation learning (GRACE).

GRACE The official PyTorch implementation of deep GRAph Contrastive rEpresentation learning (GRACE). For a thorough resource collection of self-superv

Big Data and Multi-modal Computing Group, CRIPAC 186 Dec 27, 2022
Cross View SLAM

Cross View SLAM This is the associated code and dataset repository for our paper I. D. Miller et al., "Any Way You Look at It: Semantic Crossview Loca

Ian D. Miller 99 Dec 09, 2022
A Transformer-Based Feature Segmentation and Region Alignment Method For UAV-View Geo-Localization

University1652-Baseline [Paper] [Slide] [Explore Drone-view Data] [Explore Satellite-view Data] [Explore Street-view Data] [Video Sample] [中文介绍] This

Zhedong Zheng 335 Jan 06, 2023
La source de mon module 'pyfade' disponible sur Pypi.

Version: 1.2 Introduction Pyfade est un module permettant de créer des dégradés colorés. Il vous permettra de changer chaque ligne de votre texte par

Billy 20 Sep 12, 2021
deep-table implements various state-of-the-art deep learning and self-supervised learning algorithms for tabular data using PyTorch.

deep-table implements various state-of-the-art deep learning and self-supervised learning algorithms for tabular data using PyTorch.

63 Oct 17, 2022
PyTorch Implementation of Sparse DETR

Sparse DETR By Byungseok Roh*, Jaewoong Shin*, Wuhyun Shin*, and Saehoon Kim at Kakao Brain. (*: Equal contribution) This repository is an official im

Kakao Brain 113 Dec 28, 2022
PiRank: Learning to Rank via Differentiable Sorting

PiRank: Learning to Rank via Differentiable Sorting This repository provides a reference implementation for learning PiRank-based models as described

54 Dec 17, 2022
Open source simulator for autonomous vehicles built on Unreal Engine / Unity, from Microsoft AI & Research

Welcome to AirSim AirSim is a simulator for drones, cars and more, built on Unreal Engine (we now also have an experimental Unity release). It is open

Microsoft 13.8k Jan 03, 2023
Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting

Autoformer (NeurIPS 2021) Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting Time series forecasting is a c

THUML @ Tsinghua University 847 Jan 08, 2023
MEAL V2: Boosting Vanilla ResNet-50 to 80%+ Top-1 Accuracy on ImageNet without Tricks

MEAL-V2 This is the official pytorch implementation of our paper: "MEAL V2: Boosting Vanilla ResNet-50 to 80%+ Top-1 Accuracy on ImageNet without Tric

Zhiqiang Shen 653 Dec 19, 2022
A simple AI that will give you si ple task and this is made with python

Crystal-AI A simple AI that will give you si ple task and this is made with python Prerequsites: Python3.6.2 pyttsx3 pip install pyttsx3 pyaudio pip i

CrystalAnd 1 Dec 25, 2021
Use deep learning, genetic programming and other methods to predict stock and market movements

StockPredictions Use classic tricks, neural networks, deep learning, genetic programming and other methods to predict stock and market movements. Both

Linda MacPhee-Cobb 386 Jan 03, 2023
This is an example of a reproducible modelling project

An example of a reproducible modelling project What are we doing? This example was created for the 2021 fall lecture series of Stanford's Center for O

Armin Thomas 2 Oct 26, 2021
This is Official implementation for "Pose-guided Feature Disentangling for Occluded Person Re-Identification Based on Transformer" in AAAI2022

PFD:Pose-guided Feature Disentangling for Occluded Person Re-identification based on Transformer This repo is the official implementation of "Pose-gui

Tao Wang 93 Dec 18, 2022