Code release for "Self-Tuning for Data-Efficient Deep Learning" (ICML 2021)

Overview

Self-Tuning for Data-Efficient Deep Learning

This repository contains the implementation code for paper:
Self-Tuning for Data-Efficient Deep Learning
Ximei Wang, Jinghan Gao, Mingsheng Long, Jianmin Wang
38th International Conference on Machine Learning (ICML 2021)
[Project Page] [Paper] [Video] [Slide] [Poster] [Blog] [Zhihu] [SlidesLive]


Brief Introduction for Data-Efficient Deep Learning

Mitigating the requirement for labeled data is a vital issue in deep learning community. However, common practices of TL and SSL only focus on either the pre-trained model or unlabeled data. This paper unleashes the power of both worlds by proposing a new setup named data-efficient deep learning, aims to mitigate the requirement of labeled data by unifying the exploration of labeled and unlabeled data and the transfer of pre-trained model.

To address the challenge of confirmation bias in self-training, a general Pseudo Group Contrast mechanism is devised to mitigate the reliance on pseudo-labels and boost the tolerance to false labels. To tackle the model shift problem, we unify the exploration of labeled and unlabeled data and the transfer of a pre-trained model, with a shared key queue beyond just 'parallel training'. Comprehensive experiments demonstrate that Self-Tuning outperforms its SSL and TL counterparts on five tasks by sharp margins, e.g., it doubles the accuracy of fine-tuning on Stanford-Cars provided with 15% labels.

Dependencies

  • python3.6
  • torch == 1.3.1 (with suitable CUDA and CuDNN version)
  • torchvision == 0.4.2
  • tensorboardX
  • numpy
  • argparse

Datasets

Dataset Download Link
CUB-200-2011 http://www.vision.caltech.edu/visipedia/CUB-200-2011.html
Stanford Cars http://ai.stanford.edu/~jkrause/cars/car_dataset.html
FGVC Aircraft http://www.robots.ox.ac.uk/~vgg/data/fgvc-aircraft/
Cifar100 https://www.cs.toronto.edu/~kriz/cifar.html
  • You can either download datasets via the above links or directly run the commands shown below to automatically download datasets as well as data lists from Tsinghua Cloud.

Disclaimer on Datasets

This open-sourced code will download and prepare public datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have licenses to use the dataset. It is your responsibility to determine whether you have permission to use the dataset under the dataset's license.

If you're a dataset owner and wish to update any part of it (description, citation, etc.), or do not want your dataset to be included in this code, please get in touch with us through a GitHub issue. Thanks for your contribution to the ML community!

Quick Start

  • The running commands for several datasets are shown below. Please refer to run.sh for commands for datasets with other label ratios.
python src/main.py  --root ./StanfordCars --batch_size 24 --logdir vis/ --gpu_id 0 --queue_size 32 --projector_dim 1024 --backbone resnet50  --label_ratio 15 --pretrained
python src/main.py  --root ./CUB200 --batch_size 24 --logdir vis/ --gpu_id 1 --queue_size 32 --projector_dim 1024 --backbone resnet50 --label_ratio 15 --pretrained
python src/main.py  --root ./Aircraft --batch_size 24 --logdir vis/ --gpu_id 2 --queue_size 32 --projector_dim 1024 --backbone resnet50 --label_ratio 15 --pretrained
python src/main.py  --root ./cifar100 --batch_size 20 --logdir vis/ --gpu_id 3 --queue_size 32 --backbone efficientnet-b2 --num_labeled 10000 --expand_label --pretrained --projector_dim 1024

Tensorboard Log

Dataset Label Ratio 1 Label Ratio 2 Label Ratio 3
CUB-200-2011 15% 30% 50%
Stanford Cars 15% 30% 50%
FGVC Aircraft 15% 30% 50%
Cifar100 400 2500 10000
  • We achieved better results than that reported in the paper, after fixing some small bugs of the code.

Updates

  • [07/2021] We have created a Blog post in Chinese for this work. Check it out for more details!
  • [07/2021] We have released the code and models. You can find all reproduced checkpoints via this link.
  • [06/2021] A five minute video is released to briefly introduce the main idea of Self-Tuning.
  • [05/2021] Paper accepted to ICML 2021 as a Short Talk.
  • [02/2021] arXiv version posted. Please stay tuned for updates.

Citation

If you find this code or idea useful, please cite our work:

@inproceedings{wang2021selftuning,
  title={Self-Tuning for Data-Efficient Deep Learning},
  author={Wang, Ximei and Gao, Jinghan and Long, Mingsheng and Wang, Jianmin},
  booktitle={International Conference on Machine Learning (ICML)},
  year={2021}
}

Contact

If you have any questions, feel free to contact us through email ([email protected]) or Github issues. Enjoy!

Owner
THUML @ Tsinghua University
Machine Learning Group, School of Software, Tsinghua University
THUML @ Tsinghua University
Functional TensorFlow Implementation of Singular Value Decomposition for paper Fast Graph Learning

tf-fsvd TensorFlow Implementation of Functional Singular Value Decomposition for paper Fast Graph Learning with Unique Optimal Solutions Cite If you f

Sami Abu-El-Haija 14 Nov 25, 2021
Cross-view Transformers for real-time Map-view Semantic Segmentation (CVPR 2022 Oral)

Cross View Transformers This repository contains the source code and data for our paper: Cross-view Transformers for real-time Map-view Semantic Segme

Brady Zhou 363 Dec 25, 2022
Learning Logic Rules for Document-Level Relation Extraction

LogiRE Learning Logic Rules for Document-Level Relation Extraction We propose to introduce logic rules to tackle the challenges of doc-level RE. Equip

41 Dec 26, 2022
The Empirical Investigation of Representation Learning for Imitation (EIRLI)

The Empirical Investigation of Representation Learning for Imitation (EIRLI)

Center for Human-Compatible AI 31 Nov 06, 2022
Efficient Lottery Ticket Finding: Less Data is More

The lottery ticket hypothesis (LTH) reveals the existence of winning tickets (sparse but critical subnetworks) for dense networks, that can be trained in isolation from random initialization to match

VITA 20 Sep 04, 2022
Semi-supervised Learning for Sentiment Analysis

Neural-Semi-supervised-Learning-for-Text-Classification-Under-Large-Scale-Pretraining Code, models and Datasets for《Neural Semi-supervised Learning fo

47 Jan 01, 2023
A PyTorch version of You Only Look at One-level Feature object detector

PyTorch_YOLOF A PyTorch version of You Only Look at One-level Feature object detector. The input image must be resized to have their shorter side bein

Jianhua Yang 25 Dec 30, 2022
Simple node deletion tool for onnx.

snd4onnx Simple node deletion tool for onnx. I only test very miscellaneous and limited patterns as a hobby. There are probably a large number of bugs

Katsuya Hyodo 6 May 15, 2022
Simulation of Self Driving Car

In this repository, the code to use Udacity's self driving car simulator as a testbed for training an autonomous car are provided.

Shyam Das Shrestha 1 Nov 21, 2021
ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs

(Comet-) ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs Paper Jena D. Hwang, Chandra Bhagavatula, Ronan Le Bras, Jeff Da, Keisuke Sa

AI2 152 Dec 27, 2022
Large Scale Multi-Illuminant (LSMI) Dataset for Developing White Balance Algorithm under Mixed Illumination

Large Scale Multi-Illuminant (LSMI) Dataset for Developing White Balance Algorithm under Mixed Illumination (ICCV 2021) Dataset License This work is l

DongYoung Kim 33 Jan 04, 2023
Spatiotemporal resampling methods for mlr3

mlr3spatiotempcv Package website: release | dev Spatiotemporal resampling methods for mlr3. This package extends the mlr3 package framework with spati

45 Nov 21, 2022
Object DGCNN and DETR3D, Our implementations are built on top of MMdetection3D.

This repo contains the implementations of Object DGCNN (https://arxiv.org/abs/2110.06923) and DETR3D (https://arxiv.org/abs/2110.06922). Our implementations are built on top of MMdetection3D.

Wang, Yue 539 Jan 07, 2023
Lane assist for ETS2, built with the ultra-fast-lane-detection model.

Euro-Truck-Simulator-2-Lane-Assist Lane assist for ETS2, built with the ultra-fast-lane-detection model. This project was made possible by the amazing

36 Jan 05, 2023
Repo for the Tutorials of Day1-Day3 of the Nordic Probabilistic AI School 2021 (https://probabilistic.ai/)

ProbAI 2021 - Probabilistic Programming and Variational Inference Tutorial with Pryo Day 1 (June 14) Slides Notebook: students_PPLs_Intro Notebook: so

PGM-Lab 46 Nov 01, 2022
Tesla Light Show xLights Guide With python

Tesla Light Show xLights Guide Welcome to the Tesla Light Show xLights guide! You can create and run your own light shows on Tesla vehicles. Running a

Tesla, Inc. 2.5k Dec 29, 2022
Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data - Official PyTorch Implementation (CVPR 2022)

Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data (CVPR 2022) Potentials of primitive shapes f

31 Sep 27, 2022
CVPR2021: Temporal Context Aggregation Network for Temporal Action Proposal Refinement

Temporal Context Aggregation Network - Pytorch This repo holds the pytorch-version codes of paper: "Temporal Context Aggregation Network for Temporal

Zhiwu Qing 63 Sep 27, 2022
NeurIPS 2021, self-supervised 6D pose on category level

SE(3)-eSCOPE video | paper | website Leveraging SE(3) Equivariance for Self-Supervised Category-Level Object Pose Estimation Xiaolong Li, Yijia Weng,

Xiaolong 63 Nov 22, 2022
Algorithm to texture 3D reconstructions from multi-view stereo images

MVS-Texturing Welcome to our project that textures 3D reconstructions from images. This project focuses on 3D reconstructions generated using structur

Nils Moehrle 766 Jan 04, 2023