Code release for "Self-Tuning for Data-Efficient Deep Learning" (ICML 2021)

Overview

Self-Tuning for Data-Efficient Deep Learning

This repository contains the implementation code for paper:
Self-Tuning for Data-Efficient Deep Learning
Ximei Wang, Jinghan Gao, Mingsheng Long, Jianmin Wang
38th International Conference on Machine Learning (ICML 2021)
[Project Page] [Paper] [Video] [Slide] [Poster] [Blog] [Zhihu] [SlidesLive]


Brief Introduction for Data-Efficient Deep Learning

Mitigating the requirement for labeled data is a vital issue in deep learning community. However, common practices of TL and SSL only focus on either the pre-trained model or unlabeled data. This paper unleashes the power of both worlds by proposing a new setup named data-efficient deep learning, aims to mitigate the requirement of labeled data by unifying the exploration of labeled and unlabeled data and the transfer of pre-trained model.

To address the challenge of confirmation bias in self-training, a general Pseudo Group Contrast mechanism is devised to mitigate the reliance on pseudo-labels and boost the tolerance to false labels. To tackle the model shift problem, we unify the exploration of labeled and unlabeled data and the transfer of a pre-trained model, with a shared key queue beyond just 'parallel training'. Comprehensive experiments demonstrate that Self-Tuning outperforms its SSL and TL counterparts on five tasks by sharp margins, e.g., it doubles the accuracy of fine-tuning on Stanford-Cars provided with 15% labels.

Dependencies

  • python3.6
  • torch == 1.3.1 (with suitable CUDA and CuDNN version)
  • torchvision == 0.4.2
  • tensorboardX
  • numpy
  • argparse

Datasets

Dataset Download Link
CUB-200-2011 http://www.vision.caltech.edu/visipedia/CUB-200-2011.html
Stanford Cars http://ai.stanford.edu/~jkrause/cars/car_dataset.html
FGVC Aircraft http://www.robots.ox.ac.uk/~vgg/data/fgvc-aircraft/
Cifar100 https://www.cs.toronto.edu/~kriz/cifar.html
  • You can either download datasets via the above links or directly run the commands shown below to automatically download datasets as well as data lists from Tsinghua Cloud.

Disclaimer on Datasets

This open-sourced code will download and prepare public datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have licenses to use the dataset. It is your responsibility to determine whether you have permission to use the dataset under the dataset's license.

If you're a dataset owner and wish to update any part of it (description, citation, etc.), or do not want your dataset to be included in this code, please get in touch with us through a GitHub issue. Thanks for your contribution to the ML community!

Quick Start

  • The running commands for several datasets are shown below. Please refer to run.sh for commands for datasets with other label ratios.
python src/main.py  --root ./StanfordCars --batch_size 24 --logdir vis/ --gpu_id 0 --queue_size 32 --projector_dim 1024 --backbone resnet50  --label_ratio 15 --pretrained
python src/main.py  --root ./CUB200 --batch_size 24 --logdir vis/ --gpu_id 1 --queue_size 32 --projector_dim 1024 --backbone resnet50 --label_ratio 15 --pretrained
python src/main.py  --root ./Aircraft --batch_size 24 --logdir vis/ --gpu_id 2 --queue_size 32 --projector_dim 1024 --backbone resnet50 --label_ratio 15 --pretrained
python src/main.py  --root ./cifar100 --batch_size 20 --logdir vis/ --gpu_id 3 --queue_size 32 --backbone efficientnet-b2 --num_labeled 10000 --expand_label --pretrained --projector_dim 1024

Tensorboard Log

Dataset Label Ratio 1 Label Ratio 2 Label Ratio 3
CUB-200-2011 15% 30% 50%
Stanford Cars 15% 30% 50%
FGVC Aircraft 15% 30% 50%
Cifar100 400 2500 10000
  • We achieved better results than that reported in the paper, after fixing some small bugs of the code.

Updates

  • [07/2021] We have created a Blog post in Chinese for this work. Check it out for more details!
  • [07/2021] We have released the code and models. You can find all reproduced checkpoints via this link.
  • [06/2021] A five minute video is released to briefly introduce the main idea of Self-Tuning.
  • [05/2021] Paper accepted to ICML 2021 as a Short Talk.
  • [02/2021] arXiv version posted. Please stay tuned for updates.

Citation

If you find this code or idea useful, please cite our work:

@inproceedings{wang2021selftuning,
  title={Self-Tuning for Data-Efficient Deep Learning},
  author={Wang, Ximei and Gao, Jinghan and Long, Mingsheng and Wang, Jianmin},
  booktitle={International Conference on Machine Learning (ICML)},
  year={2021}
}

Contact

If you have any questions, feel free to contact us through email ([email protected]) or Github issues. Enjoy!

Owner
THUML @ Tsinghua University
Machine Learning Group, School of Software, Tsinghua University
THUML @ Tsinghua University
[NeurIPS'20] Self-supervised Co-Training for Video Representation Learning. Tengda Han, Weidi Xie, Andrew Zisserman.

CoCLR: Self-supervised Co-Training for Video Representation Learning This repository contains the implementation of: InfoNCE (MoCo on videos) UberNCE

Tengda Han 271 Jan 02, 2023
Pytorch implementation of Value Iteration Networks (NIPS 2016 best paper)

VIN: Value Iteration Networks A quick thank you A few others have released amazing related work which helped inspire and improve my own implementation

Kent Sommer 297 Dec 26, 2022
Industrial knn-based anomaly detection for images. Visit streamlit link to check out the demo.

Industrial KNN-based Anomaly Detection ⭐ Now has streamlit support! ⭐ Run $ streamlit run streamlit_app.py This repo aims to reproduce the results of

aventau 102 Dec 26, 2022
Code for the Lovász-Softmax loss (CVPR 2018)

The Lovász-Softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks Maxim Berman, Amal Ranne

Maxim Berman 1.3k Jan 04, 2023
Pseudo lidar - (CVPR 2019) Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving

Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving This paper has been accpeted by Conference o

Yan Wang 881 Dec 27, 2022
Pytorch implementation of “Recursive Non-Autoregressive Graph-to-Graph Transformer for Dependency Parsing with Iterative Refinement”

Graph-to-Graph Transformers Self-attention models, such as Transformer, have been hugely successful in a wide range of natural language processing (NL

Idiap Research Institute 40 Aug 14, 2022
Code for Transformers Solve Limited Receptive Field for Monocular Depth Prediction

Official PyTorch code for Transformers Solve Limited Receptive Field for Monocular Depth Prediction. Guanglei Yang, Hao Tang, Mingli Ding, Nicu Sebe,

stanley 152 Dec 16, 2022
A Python framework for conversational search

Chatty Goose Multi-stage Conversational Passage Retrieval: An Approach to Fusing Term Importance Estimation and Neural Query Rewriting Installation Ma

Castorini 36 Oct 23, 2022
Code for "Learning to Regrasp by Learning to Place"

Learning2Regrasp Learning to Regrasp by Learning to Place, CoRL 2021. Introduction We propose a point-cloud-based system for robots to predict a seque

Shuo Cheng (成硕) 18 Aug 27, 2022
A python package for generating, analyzing and visualizing building shadows

pybdshadow Introduction pybdshadow is a python package for generating, analyzing and visualizing building shadows from large scale building geographic

Qing Yu 13 Nov 30, 2022
Baseline for the Spoofing-aware Speaker Verification Challenge 2022

Introduction This repository contains several materials that supplements the Spoofing-Aware Speaker Verification (SASV) Challenge 2022 including: calc

40 Dec 28, 2022
A Python library for Deep Graph Networks

PyDGN Wiki Description This is a Python library to easily experiment with Deep Graph Networks (DGNs). It provides automatic management of data splitti

Federico Errica 194 Dec 22, 2022
Implements pytorch code for the Accelerated SGD algorithm.

AccSGD This is the code associated with Accelerated SGD algorithm used in the paper On the insufficiency of existing momentum schemes for Stochastic O

205 Jan 02, 2023
This repository is the offical Pytorch implementation of ContextPose: Context Modeling in 3D Human Pose Estimation: A Unified Perspective (CVPR 2021).

Context Modeling in 3D Human Pose Estimation: A Unified Perspective (CVPR 2021) Introduction This repository is the offical Pytorch implementation of

37 Nov 21, 2022
Unofficial keras(tensorflow) implementation of MAE model from Masked Autoencoders Are Scalable Vision Learners

MAE-keras Unofficial keras(tensorflow) implementation of MAE model described in 'Masked Autoencoders Are Scalable Vision Learners'. This work has been

Yewon 11 Jun 12, 2022
Keras attention models including botnet,CoaT,CoAtNet,CMT,cotnet,halonet,resnest,resnext,resnetd,volo,mlp-mixer,resmlp,gmlp,levit

Keras_cv_attention_models Keras_cv_attention_models Usage Basic Usage Layers Model surgery AotNet ResNetD ResNeXt ResNetQ BotNet VOLO ResNeSt HaloNet

319 Dec 28, 2022
Pytorch implementation of the paper "Class-Balanced Loss Based on Effective Number of Samples"

Class-balanced-loss-pytorch Pytorch implementation of the paper Class-Balanced Loss Based on Effective Number of Samples presented at CVPR'19. Yin Cui

Vandit Jain 697 Dec 29, 2022
Sharing of contents on mitochondrial encounter networks

mito-network-sharing Sharing of contents on mitochondrial encounter networks Required: R with igraph, brainGraph, ggplot2, and XML libraries; igraph l

Stochastic Biology Group 0 Oct 01, 2021
Object detection and instance segmentation toolkit based on PaddlePaddle.

Object detection and instance segmentation toolkit based on PaddlePaddle.

9.3k Jan 02, 2023