nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation "

Related tags

Deep LearningnnFormer
Overview

nnFormer: Interleaved Transformer for Volumetric Segmentation

Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation ". Please read our preprint at the following link: paper_address.

Parts of codes are borrowed from nn-UNet.


Installation

1、System requirements

This software was originally designed and run on a system running Ubuntu 18.01, with Python 3.6, PyTorch 1.8.1, and CUDA 10.1. For a full list of software packages and version numbers, see the Conda environment file environment.yml.

This software leverages graphical processing units (GPUs) to accelerate neural network training and evaluation; systems lacking a suitable GPU will likely take an extremely long time to train or evaluate models. The software was tested with the NVIDIA RTX 2080 TI GPU, though we anticipate that other GPUs will also work, provided that the unit offers sufficient memory.

2、Installation guide

We recommend installation of the required packages using the Conda package manager, available through the Anaconda Python distribution. Anaconda is available free of charge for non-commercial use through Anaconda Inc. After installing Anaconda and cloning this repository, For use as integrative framework:

git clone https://github.com/282857341/nnFormer.git
cd nnFormer
conda env create -f environment.yml
source activate nnFormer
pip install -e .

3、The main downloaded file directory description

  • ACDC_dice: Calculate dice of ACDC dataset

  • Synapse_dice_and_hd: Calulate dice of the Synapse dataset

  • dataset_json: About how to divide the training and test set

  • inference: The entry program of the infernece.

  • network_architecture: The models are stored here.

  • run: The entry program of the training.

  • training: The trainers are stored here, the training of the network is conducted by the trainer.


Training

1、Datasets

Datasets can be downloaded at the following links:

And the division of the dataset can be seen in the files in the ./dataset_json/

Dataset I ACDC

Dataset II The Synapse multi-organ CT dataset

2、Setting up the datasets

While we provide code to load data for training a deep-learning model, you will first need to download images from the above repositories. Regarding the format setting and related preprocessing of the dataset, we operate based on nnFormer, so I won’t go into details here. You can see nnUNet for specific operations.

Regarding the downloaded data, I will not introduce too much here, you can go to the corresponding website to view it. Organize the downloaded DataProcessed as follows:

./Pretrained_weight/
./nnFormer/
./DATASET/
  ├── nnFormer_raw/
      ├── nnFormer_raw_data/
          ├── Task01_ACDC/
              ├── imagesTr/
              ├── imagesTs/
              ├── labelsTr/
              ├── labelsTs/
              ├── dataset.json
          ├── Task02_Synapse/
              ├── imagesTr/
              ├── imagesTs/
              ├── labelsTr/
              ├── labelsTs/
              ├── dataset.json
      ├── nnFormer_cropped_data/
  ├── nnFormer_trained_models/
  ├── nnFormer_preprocessed/

After that, you can preprocess the data using:

nnFormer_convert_decathlon_task -i ../DATASET/nnFormer_raw/nnFormer_raw_data/Task01_ACDC
nnFormer_convert_decathlon_task -i ../DATASET/nnFormer_raw/nnFormer_raw_data/Task02_Synapse
nnFormer_plan_and_preprocess -t 1
nnFormer_plan_and_preprocess -t 2

3 Generating plan files of our network

python ./nnformer/change_plan_swin.py 1
python ./nnformer/change_plan_swin.py 2

4 Training and Testing the models

A. Use the best model we have trained to infer the test set
(1).Put the downloaded the best training weights in the specified directory.

the download link is

Link:https://pan.baidu.com/s/1h1h8_DKvve8enyTiIyzfHw 
Extraction code:yimv

the specified directory is

../DATASET/nnFormer_trained_models/nnFormer/3d_fullres/Task001_ACDC/nnFormerTrainerV2_ACDC__nnFormerPlansv2.1/fold_0/model_best.model
../DATASET/nnFormer_trained_models/nnFormer/3d_fullres/Task001_ACDC/nnFormerTrainerV2_ACDC__nnFormerPlansv2.1/fold_0/model_best.model.pkl

../DATASET/nnFormer_trained_models/nnFormer/3d_fullres/Task002_Synapse/nnFormerTrainerV2_Synapse__nnFormerPlansv2.1/fold_0/model_best.model
../DATASET/nnFormer_trained_models/nnFormer/3d_fullres/Task002_Synapse/nnFormerTrainerV2_Synapse__nnFormerPlansv2.1/fold_0/model_best.model.pkl
(2).Evaluating the models
  • ACDC

Inference

nnFormer_predict -i ../DATASET/nnFormer_raw/nnFormer_raw_data/Task001_ACDC/imagesTs -o ../DATASET/nnFormer_raw/nnFormer_raw_data/Task001_ACDC/inferTs/output -m 3d_fullres -f 0 -t 1 -chk model_best -tr nnFormerTrainerV2_ACDC

Calculate DICE

python ./nnformer/ACDC_dice/inference.py
  • The Synapse multi-organ CT dataset

Inference

nnFormer_predict -i ../DATASET/nnFormer_raw/nnFormer_raw_data/Task002_Synapse/imagesTs -o ../DATASET/nnFormer_raw/nnFormer_raw_data/Task002_Synapse/inferTs/output -m 3d_fullres -f 0 -t 2 -chk model_best -tr nnFormerTrainerV2_Synapse

Calculate DICE

python ./nnformer/Synapse_dice_and_hd/inference.py

The dice result will be saved in ../DATASET/nnFormer_raw/nnFormer_raw_data/Task002_Synapse/inferTs/output

B. The complete process of retraining the model and inference
(1).Put the downloaded pre-training weights in the specified directory.

the download link is

Link:https://pan.baidu.com/s/1h1h8_DKvve8enyTiIyzfHw 
Extraction code:yimv

the specified directory is

../Pretrained_weight/pretrain_ACDC.model
../Pretrained_weight/pretrain_Synapse.model
(2).Training
  • ACDC
nnFormer_train 3d_fullres nnFormerTrainerV2_ACDC 1 0 
  • The Synapse multi-organ CT dataset
nnFormer_train 3d_fullres nnFormerTrainerV2_Synapse 2 0 
(3).Evaluating the models
  • ACDC

Inference

nnFormer_predict -i ../DATASET/nnFormer_raw/nnFormer_raw_data/Task001_ACDC/imagesTs -o ../DATASET/nnFormer_raw/nnFormer_raw_data/Task001_ACDC/inferTs/output -m 3d_fullres -f 0 -t 1 -chk model_best -tr nnFormerTrainerV2_ACDC

Calculate DICE

python ./nnformer/ACDC_dice/inference.py
  • The Synapse multi-organ CT dataset

Inference

nnFormer_predict -i ../DATASET/nnFormer_raw/nnFormer_raw_data/Task002_Synapse/imagesTs -o ../DATASET/nnFormer_raw/nnFormer_raw_data/Task002_Synapse/inferTs/output -m 3d_fullres -f 0 -t 2 -chk model_best -tr nnFormerTrainerV2_Synapse

Calculate DICE

python ./nnformer/Synapse_dice_and_hd/inference.py

The dice results will be saved in ../DATASET/nnFormer_raw/nnFormer_raw_data/Task002_Synapse/inferTs/output

Owner
jsguo
jsguo
Single-Stage 6D Object Pose Estimation, CVPR 2020

Overview This repository contains the code for the paper Single-Stage 6D Object Pose Estimation. Yinlin Hu, Pascal Fua, Wei Wang and Mathieu Salzmann.

CVLAB @ EPFL 89 Dec 26, 2022
Pre-trained Deep Learning models and demos (high quality and extremely fast)

OpenVINO™ Toolkit - Open Model Zoo repository This repository includes optimized deep learning models and a set of demos to expedite development of hi

OpenVINO Toolkit 3.4k Dec 31, 2022
An educational tool to introduce AI planning concepts using mobile manipulator robots.

JEDAI Explains Decision-Making AI Virtual Machine Image The recommended way of using JEDAI is to use pre-configured Virtual Machine image that is avai

Autonomous Agents and Intelligent Robots 13 Nov 15, 2022
The official implementation of "Rethink Dilated Convolution for Real-time Semantic Segmentation"

RegSeg The official implementation of "Rethink Dilated Convolution for Real-time Semantic Segmentation" Paper: arxiv D block Decoder Setup Install the

Roland 61 Dec 27, 2022
This is a re-implementation of TransGAN: Two Pure Transformers Can Make One Strong GAN (CVPR 2021) in PyTorch.

TransGAN: Two Transformers Can Make One Strong GAN [YouTube Video] Paper Authors: Yifan Jiang, Shiyu Chang, Zhangyang Wang CVPR 2021 This is re-implem

Ahmet Sarigun 79 Jan 05, 2023
code for paper "Does Unsupervised Architecture Representation Learning Help Neural Architecture Search?"

Does Unsupervised Architecture Representation Learning Help Neural Architecture Search? Code for paper: Does Unsupervised Architecture Representation

39 Dec 17, 2022
Simulation environments for the CrazyFlie quadrotor: Used for Reinforcement Learning and Sim-to-Real Transfer

Phoenix-Drone-Simulation An OpenAI Gym environment based on PyBullet for learning to control the CrazyFlie quadrotor: Can be used for Reinforcement Le

Sven Gronauer 8 Dec 07, 2022
BitPack is a practical tool to efficiently save ultra-low precision/mixed-precision quantized models.

BitPack is a practical tool that can efficiently save quantized neural network models with mixed bitwidth.

Zhen Dong 36 Dec 02, 2022
Some bravo or inspiring research works on the topic of curriculum learning.

Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtu

131 Jan 07, 2023
Parametric Contrastive Learning (ICCV2021)

Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or

DV Lab 156 Dec 21, 2022
DVG-Face: Dual Variational Generation for Heterogeneous Face Recognition, TPAMI 2021

DVG-Face: Dual Variational Generation for HFR This repo is a PyTorch implementation of DVG-Face: Dual Variational Generation for Heterogeneous Face Re

52 Dec 30, 2022
Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation

Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation Requirements This repository needs mmsegmentation Training To train

Adelaide Intelligent Machines (AIM) Group 7 Sep 12, 2022
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation Created by Charles R. Qi, Hao Su, Kaichun Mo, Leonidas J. Guibas from Sta

Charles R. Qi 4k Dec 30, 2022
Programming with Neural Surrogates of Programs

Programming with Neural Surrogates of Programs

0 Dec 12, 2021
A set of tests for evaluating large-scale algorithms for Wasserstein-2 transport maps computation.

Continuous Wasserstein-2 Benchmark This is the official Python implementation of the NeurIPS 2021 paper Do Neural Optimal Transport Solvers Work? A Co

Alexander 22 Dec 12, 2022
Multi-Joint dynamics with Contact. A general purpose physics simulator.

MuJoCo Physics MuJoCo stands for Multi-Joint dynamics with Contact. It is a general purpose physics engine that aims to facilitate research and develo

DeepMind 5.2k Jan 02, 2023
A weakly-supervised scene graph generation codebase. The implementation of our CVPR2021 paper ``Linguistic Structures as Weak Supervision for Visual Scene Graph Generation''

README.md shall be finished soon. WSSGG 0 Overview 1 Installation 1.1 Faster-RCNN 1.2 Language Parser 1.3 GloVe Embeddings 2 Settings 2.1 VG-GT-Graph

Keren Ye 35 Nov 20, 2022
EfficientNetV2 implementation using PyTorch

EfficientNetV2-S implementation using PyTorch Train Steps Configure imagenet path by changing data_dir in train.py python main.py --benchmark for mode

Jahongir Yunusov 86 Dec 29, 2022
git《Joint Entity and Relation Extraction with Set Prediction Networks》(2020) GitHub:

Joint Entity and Relation Extraction with Set Prediction Networks Source code for Joint Entity and Relation Extraction with Set Prediction Networks. W

130 Dec 13, 2022
HackBMU-5.0-Team-Ctrl-Alt-Elite - HackBMU 5.0 Team Ctrl Alt Elite

HackBMU-5.0-Team-Ctrl-Alt-Elite The search is over. We present to you ‘Health-A-

3 Feb 19, 2022