Code for paper "A Critical Assessment of State-of-the-Art in Entity Alignment" (https://arxiv.org/abs/2010.16314)

Overview

A Critical Assessment of State-of-the-Art in Entity Alignment

Arxiv Python 3.8 PyTorch License: MIT

This repository contains the source code for the paper

A Critical Assessment of State-of-the-Art in Entity Alignment
Max Berrendorf, Ludwig Wacker, and Evgeniy Faerman
https://arxiv.org/abs/2010.16314

Installation

Setup and activate virtual environment:

python3.8 -m venv ./venv
source ./venv/bin/activate

Install requirements (in this virtual environment):

pip install -U pip
pip install -U -r requirements.txt

In order to run the DGMC scripts, you additionally need to setup its requirements as described in the corresponding GitHub repository's README. We do not include them into requirements.txt, since their installation is a bit more involved, including non-Python dependencies.

Preparation

MLFlow

In order to track results to a MLFlow server, start it first by running

mlflow server

Note: When storing the result for many configurations, we recommend to setup a database backend following the instructions. For the following examples, we assume that the server is running at

TRACKING_URI=http://localhost:5000

OpenEA RDGCN embeddings

Please download the RDGCN embeddings extracted with the OpenEA codebase from here and place them in ~/.kgm/openea_rdgcn_embeddings. They require around 160MiB storage.

BERT initialization

To generate data for the BERT-based initialization, run

(venv) PYTHONPATH=./src python3 executables/prepare_bert.py

We also provide preprocessed files at this url. If you prefer to use those, please download and place them in ~/.kgm/bert_prepared. They require around 6.1GiB storage.

Experiments

For all experiments the results are logged to the running MLFlow instance.

Note: The hyperparameter searches takes a significant amount of time (~multiple days), and requires access to GPU(s). You can abort the script at any time, and inspect the current results via the web interface of MLFlow.

Zero-Shot

For the zero-shot evaluation run

(venv) PYTHONPATH=./src python3 executables/zero_shot.py --tracking_uri=${TRACKING_URI} 

GCN-Align

To run the hyperparameter search run

(venv) PYTHONPATH=./src python3 executables/tune_gcn_align.py --tracking_uri=${TRACKING_URI} 

RDGCN

To run the hyperparameter search run

(venv) PYTHONPATH=./src python3 executables/tune_rdgcn.py --tracking_uri=${TRACKING_URI} 

DGMC

To run the hyperparameter search run

(venv) PYTHONPATH=./src python3 executables/tune_dgmc.py  --tracking_uri=${TRACKING_URI} 

Evaluation

To summarize the dataset statistics run

(venv) PYTHONPATH=./src python3 executables/summarize.py --target datasets --force

To summarize all experiments run

(venv) PYTHONPATH=./src python3 executables/summarize.py --target results --tracking_uri=${TRACKING_URI} --force

To generate the ablation study table run

(venv) PYTHONPATH=./src python3 executables/summarize.py --target ablation --tracking_uri=${TRACKING_URI} --force
You might also like...
Pytorch implementation of Each Part Matters: Local Patterns Facilitate Cross-view Geo-localization https://arxiv.org/abs/2008.11646
Pytorch implementation of Each Part Matters: Local Patterns Facilitate Cross-view Geo-localization https://arxiv.org/abs/2008.11646

[TCSVT] Each Part Matters: Local Patterns Facilitate Cross-view Geo-localization LPN [Paper] NEWs Prerequisites Python 3.6 GPU Memory = 8G Numpy 1.

https://arxiv.org/abs/2102.11005
https://arxiv.org/abs/2102.11005

LogME LogME: Practical Assessment of Pre-trained Models for Transfer Learning How to use Just feed the features f and labels y to the function, and yo

Official Implementation for
Official Implementation for "ReStyle: A Residual-Based StyleGAN Encoder via Iterative Refinement" https://arxiv.org/abs/2104.02699

ReStyle: A Residual-Based StyleGAN Encoder via Iterative Refinement Recently, the power of unconditional image synthesis has significantly advanced th

ISTR: End-to-End Instance Segmentation with Transformers (https://arxiv.org/abs/2105.00637)

This is the project page for the paper: ISTR: End-to-End Instance Segmentation via Transformers, Jie Hu, Liujuan Cao, Yao Lu, ShengChuan Zhang, Yan Wa

Non-Official Pytorch implementation of
Non-Official Pytorch implementation of "Face Identity Disentanglement via Latent Space Mapping" https://arxiv.org/abs/2005.07728 Using StyleGAN2 instead of StyleGAN

Face Identity Disentanglement via Latent Space Mapping - Implement in pytorch with StyleGAN 2 Description Pytorch implementation of the paper Face Ide

Minimal implementation of PAWS (https://arxiv.org/abs/2104.13963) in TensorFlow.
Minimal implementation of PAWS (https://arxiv.org/abs/2104.13963) in TensorFlow.

PAWS-TF 🐾 Implementation of Semi-Supervised Learning of Visual Features by Non-Parametrically Predicting View Assignments with Support Samples (PAWS)

YOLO5Face: Why Reinventing a Face Detector (https://arxiv.org/abs/2105.12931)
YOLO5Face: Why Reinventing a Face Detector (https://arxiv.org/abs/2105.12931)

Introduction Yolov5-face is a real-time,high accuracy face detection. Performance Single Scale Inference on VGA resolution(max side is equal to 640 an

A PyTorch implementation of EventProp [https://arxiv.org/abs/2009.08378], a method to train Spiking Neural Networks
A PyTorch implementation of EventProp [https://arxiv.org/abs/2009.08378], a method to train Spiking Neural Networks

Spiking Neural Network training with EventProp This is an unofficial PyTorch implemenation of EventProp, a method to compute exact gradients for Spiki

Unofficial implementation of
Unofficial implementation of "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" (https://arxiv.org/abs/2103.14030)

Swin-Transformer-Tensorflow A direct translation of the official PyTorch implementation of "Swin Transformer: Hierarchical Vision Transformer using Sh

Releases(v1.1.1)
Owner
Max Berrendorf
Max Berrendorf
Source code for The Power of Many: A Physarum Swarm Steiner Tree Algorithm

Physarum-Swarm-Steiner-Algo Source code for The Power of Many: A Physarum Steiner Tree Algorithm Code implements ideas from the following papers: Sher

Sheryl Hsu 2 Mar 28, 2022
PaSST: Efficient Training of Audio Transformers with Patchout

PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa

165 Dec 26, 2022
EMNLP 2021 paper Models and Datasets for Cross-Lingual Summarisation.

This repository contains data and code for our EMNLP 2021 paper Models and Datasets for Cross-Lingual Summarisation. Please contact me at

9 Oct 28, 2022
Yolact-keras实例分割模型在keras当中的实现

Yolact-keras实例分割模型在keras当中的实现 目录 性能情况 Performance 所需环境 Environment 文件下载 Download 训练步骤 How2train 预测步骤 How2predict 评估步骤 How2eval 参考资料 Reference 性能情况 训练数

Bubbliiiing 11 Dec 26, 2022
AirCode: A Robust Object Encoding Method

AirCode This repo contains source codes for the arXiv preprint "AirCode: A Robust Object Encoding Method" Demo Object matching comparison when the obj

Chen Wang 30 Dec 09, 2022
Numerical-computing-is-fun - Learning numerical computing with notebooks for all ages.

As much as this series is to educate aspiring computer programmers and data scientists of all ages and all backgrounds, it is also a reminder to mysel

EKA foundation 758 Dec 25, 2022
Unsupervised Feature Ranking via Attribute Networks.

FRANe Unsupervised Feature Ranking via Attribute Networks (FRANe) converts a dataset into a network (graph) with nodes that correspond to the features

7 Sep 29, 2022
Film review classification

Film review classification Решение задачи классификации отзывов на фильмы на положительные и отрицательные с помощью рекуррентных нейронных сетей 1. З

Nikita Dukin 3 Jan 21, 2022
A pytorch implementation of MBNET: MOS PREDICTION FOR SYNTHESIZED SPEECH WITH MEAN-BIAS NETWORK

Pytorch-MBNet A pytorch implementation of MBNET: MOS PREDICTION FOR SYNTHESIZED SPEECH WITH MEAN-BIAS NETWORK Training To train a new model, please ru

46 Dec 28, 2022
This repository contains the source code of an efficient 1D probabilistic model for music time analysis proposed in ICASSP2022 venue.

Jump Reward Inference for 1D Music Rhythmic State Spaces An implementation of the probablistic jump reward inference model for music rhythmic informat

Mojtaba Heydari 25 Dec 16, 2022
[ICCV 2021] Group-aware Contrastive Regression for Action Quality Assessment

CoRe Created by Xumin Yu*, Yongming Rao*, Wenliang Zhao, Jiwen Lu, Jie Zhou This is the PyTorch implementation for ICCV paper Group-aware Contrastive

Xumin Yu 31 Dec 24, 2022
Clockwork Convnets for Video Semantic Segmentation

Clockwork Convnets for Video Semantic Segmentation This is the reference implementation of arxiv:1608.03609: Clockwork Convnets for Video Semantic Seg

Evan Shelhamer 141 Nov 21, 2022
Official implementation of SIGIR'2021 paper: "Sequential Recommendation with Graph Neural Networks".

SURGE: Sequential Recommendation with Graph Neural Networks This is our TensorFlow implementation for the paper: Sequential Recommendation with Graph

FIB LAB, Tsinghua University 53 Dec 26, 2022
This is an implementation of PIFuhd based on Pytorch

Open-PIFuhd This is a unofficial implementation of PIFuhd PIFuHD: Multi-Level Pixel-Aligned Implicit Function forHigh-Resolution 3D Human Digitization

Lingteng Qiu 235 Dec 19, 2022
Evaluation toolkit of the informative tracking benchmark comprising 9 scenarios, 180 diverse videos, and new challenges.

Informative-tracking-benchmark Informative tracking benchmark (ITB) higher diversity. It contains 9 representative scenarios and 180 diverse videos. m

Xin Li 15 Nov 26, 2022
A memory-efficient implementation of DenseNets

efficient_densenet_pytorch A PyTorch =1.0 implementation of DenseNets, optimized to save GPU memory. Recent updates Now works on PyTorch 1.0! It uses

Geoff Pleiss 1.4k Dec 25, 2022
Coded illumination for improved lensless imaging

CodedCam Coded Illumination for Improved Lensless Imaging Paper | Supplementary results | Data and Code are available. Coded illumination for improved

Computational Sensing and Information Processing Lab 1 Nov 29, 2021
L-Verse: Bidirectional Generation Between Image and Text

Far beyond learning long-range interactions of natural language, transformers are becoming the de-facto standard for many vision tasks with their power and scalabilty

Kim, Taehoon 102 Dec 21, 2022
An efficient and effective learning to rank algorithm by mining information across ranking candidates. This repository contains the tensorflow implementation of SERank model. The code is developed based on TF-Ranking.

SERank An efficient and effective learning to rank algorithm by mining information across ranking candidates. This repository contains the tensorflow

Zhihu 44 Oct 20, 2022
Learning Confidence for Out-of-Distribution Detection in Neural Networks

Learning Confidence Estimates for Neural Networks This repository contains the code for the paper Learning Confidence for Out-of-Distribution Detectio

235 Jan 05, 2023