ISTR: End-to-End Instance Segmentation with Transformers (https://arxiv.org/abs/2105.00637)

Related tags

Deep LearningISTR
Overview

This is the project page for the paper:

ISTR: End-to-End Instance Segmentation via Transformers,
Jie Hu, Liujuan Cao, Yao Lu, ShengChuan Zhang, Yan Wang, Ke Li, Feiyue Huang, Ling Shao, Rongrong Ji,
arXiv 2105.00637

Highlights:

  • GPU Friendly: Four 1080Ti/2080Ti GPUs can handle the training for R50, R101 backbones with ISTR.
  • High Performance: On COCO test-dev, ISTR-R50-3x gets 46.8/38.6 box/mask AP, and ISTR-R101-3x gets 48.1/39.9 box/mask AP.

Updates

  • (2021.05.03) The project page for ISTR is avaliable.

Models

Method inf. time box AP mask AP download
ISTR-R50-3x 17.8 FPS 46.8 38.6 model | log
ISTR-R101-3x 13.9 FPS 48.1 39.9 model | log
  • The inference time is evaluated with a single 2080Ti GPU.
  • We use the models pre-trained on ImageNet using torchvision. The ImageNet pre-trained ResNet-101 backbone is obtained from SparseR-CNN.

Installation

The codes are built on top of Detectron2, SparseR-CNN, and AdelaiDet.

Requirements

  • Python=3.8
  • PyTorch=1.6.0, torchvision=0.7.0, cudatoolkit=10.1
  • OpenCV for visualization

Steps

  1. Install the repository (we recommend to use Anaconda for installation.)
conda create -n ISTR python=3.8 -y
conda activate ISTR
conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.1 -c pytorch
pip install opencv-python
pip install scipy
pip install shapely
git clone https://github.com/hujiecpp/ISTR.git
cd ISTR
python setup.py build develop
  1. Link coco dataset path
ln -s /coco_dataset_path/coco ./datasets
  1. Train ISTR (e.g., with ResNet50 backbone)
python projects/ISTR/train_net.py --num-gpus 4 --config-file projects/ISTR/configs/ISTR-R50-3x.yaml
  1. Evaluate ISTR (e.g., with ResNet50 backbone)
python projects/ISTR/train_net.py --num-gpus 4 --config-file projects/ISTR/configs/ISTR-R50-3x.yaml --eval-only MODEL.WEIGHTS ./output/model_final.pth
  1. Visualize the detection and segmentation results (e.g., with ResNet50 backbone)
python demo/demo.py --config-file projects/ISTR/configs/ISTR-R50-3x.yaml --input input1.jpg --output ./output --confidence-threshold 0.4 --opts MODEL.WEIGHTS ./output/model_final.pth

Citation

If our paper helps your research, please cite it in your publications:

@article{hu2021ISTR,
  title={ISTR: End-to-End Instance Segmentation via Transformers},
  author={Hu, Jie and Cao, Liujuan and Lu, Yao and Zhang, ShengChuan and Li, Ke and Huang, Feiyue and Shao, Ling and Ji, Rongrong},
  journal={arXiv preprint arXiv:2105.00637},
  year={2021}
}
Owner
Jie Hu
Phd Student, Xiamen University.
Jie Hu
Pytorch implementation of Each Part Matters: Local Patterns Facilitate Cross-view Geo-localization https://arxiv.org/abs/2008.11646

[TCSVT] Each Part Matters: Local Patterns Facilitate Cross-view Geo-localization LPN [Paper] NEWs Prerequisites Python 3.6 GPU Memory = 8G Numpy 1.

46 Dec 14, 2022
Industrial Image Anomaly Localization Based on Gaussian Clustering of Pre-trained Feature

Industrial Image Anomaly Localization Based on Gaussian Clustering of Pre-trained Feature Q. Wan, L. Gao, X. Li and L. Wen, "Industrial Image Anomaly

smiler 6 Dec 25, 2022
Code for "Human Pose Regression with Residual Log-likelihood Estimation", ICCV 2021 Oral

Human Pose Regression with Residual Log-likelihood Estimation [Paper] [arXiv] [Project Page] Human Pose Regression with Residual Log-likelihood Estima

JeffLi 347 Dec 24, 2022
Official PyTorch implementation of "Uncertainty-Based Offline Reinforcement Learning with Diversified Q-Ensemble" (NeurIPS'21)

Uncertainty-Based Offline Reinforcement Learning with Diversified Q-Ensemble This is the code for reproducing the results of the paper Uncertainty-Bas

43 Nov 23, 2022
Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation

Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation This reposi

First Person Vision @ Image Processing Laboratory - University of Catania 1 Aug 21, 2022
Official repo for our 3DV 2021 paper "Monocular 3D Reconstruction of Interacting Hands via Collision-Aware Factorized Refinements".

Monocular 3D Reconstruction of Interacting Hands via Collision-Aware Factorized Refinements Yu Rong, Jingbo Wang, Ziwei Liu, Chen Change Loy Paper. Pr

Yu Rong 41 Dec 13, 2022
This repository is a series of notebooks that show solutions for the projects at Dataquest.io.

Dataquest Project Solutions This repository is a series of notebooks that show solutions for the projects at Dataquest.io. Of course, there are always

Dataquest 1.1k Dec 30, 2022
Reading list for research topics in Masked Image Modeling

awesome-MIM Reading list for research topics in Masked Image Modeling(MIM). We list the most popular methods for MIM, if I missed something, please su

ligang 231 Dec 07, 2022
Residual Dense Net De-Interlace Filter (RDNDIF)

Residual Dense Net De-Interlace Filter (RDNDIF) Work in progress deep de-interlacer filter. It is based on the architecture proposed by Bernasconi et

Louis 7 Feb 15, 2022
SIEM Logstash parsing for more than hundred technologies

LogIndexer Pipeline Logstash Parsing Configurations for Elastisearch SIEM and OpenDistro for Elasticsearch SIEM Why this project exists The overhead o

146 Dec 29, 2022
TensorFlow implementation of ENet, trained on the Cityscapes dataset.

segmentation TensorFlow implementation of ENet (https://arxiv.org/pdf/1606.02147.pdf) based on the official Torch implementation (https://github.com/e

Fredrik Gustafsson 248 Dec 16, 2022
A universal memory dumper using Frida

Fridump Fridump (v0.1) is an open source memory dumping tool, primarily aimed to penetration testers and developers. Fridump is using the Frida framew

551 Jan 07, 2023
Algebraic effect handlers in Python

PyEffect: Algebraic effects in Python What IDK. Usage effects.handle(operation, handlers=None) effects.set_handler(effect, handler) Supported effects

Greg Werbin 5 Dec 27, 2021
A Python Reconnection Tool for alt:V

altv-reconnect What? It invokes a reconnect in the altV Client Dev Console. You get to determine when your local client should reconnect when developi

8 Jun 30, 2022
Pre-Trained Image Processing Transformer (IPT)

Pre-Trained Image Processing Transformer (IPT) By Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping Deng, Zhenhua Liu, Siwei Ma, Chunjing Xu, Cha

HUAWEI Noah's Ark Lab 332 Dec 18, 2022
Object classification with basic computer vision techniques

naive-image-classification Object classification with basic computer vision techniques. Final assignment for the computer vision course I took at univ

2 Jul 01, 2022
The official code repository for examples in the O'Reilly book 'Generative Deep Learning'

Generative Deep Learning Teaching Machines to paint, write, compose and play The official code repository for examples in the O'Reilly book 'Generativ

David Foster 1.3k Dec 29, 2022
A python interface for training Reinforcement Learning bots to battle on pokemon showdown

The pokemon showdown Python environment A Python interface to create battling pokemon agents. poke-env offers an easy-to-use interface for creating ru

Haris Sahovic 184 Dec 30, 2022
Unified API to facilitate usage of pre-trained "perceptor" models, a la CLIP

mmc installation git clone https://github.com/dmarx/Multi-Modal-Comparators cd 'Multi-Modal-Comparators' pip install poetry poetry build pip install d

David Marx 37 Nov 25, 2022
Autoencoder - Reducing the Dimensionality of Data with Neural Network

autoencoder Implementation of the Reducing the Dimensionality of Data with Neural Network – G. E. Hinton and R. R. Salakhutdinov paper. Notes Aim to m

Jordan Burgess 13 Nov 17, 2022