Multitask Learning Strengthens Adversarial Robustness

Related tags

Deep LearningMTRobust
Overview

Multitask Learning Strengthens Adversarial Robustness

@inproceedings{mao2020multitask,
  author    = {Chengzhi Mao and
               Amogh Gupta and
               Vikram Nitin and
               Baishakhi Ray and
               Shuran Song and
               Junfeng Yang and
               Carl Vondrick},
  title     = {Multitask Learning Strengthens Adversarial Robustness},
  booktitle = {Computer Vision - {ECCV} 2020 - 16th European Conference, Glasgow,
               UK, August 23-28, 2020, Proceedings, Part {II}},
  series    = {Lecture Notes in Computer Science},
  volume    = {12347},
  pages     = {158--174},
  publisher = {Springer},
  year      = {2020},
  url       = {https://doi.org/10.1007/978-3-030-58536-5\_10},
  doi       = {10.1007/978-3-030-58536-5\_10},
}

Demo for Robustness under multitask attack

Download Cityscapes dataset from Cityscapes.

Download pretrained DRN-22 model from DRN model zoo.

Modify the path to data and model in demo_mtlrobust.py.

Run demo to see the trend that model overall robustness is increased when the output dimension increased.

To see the gradient norm measurement of robustness, set get_grad=True,

To see the actually robust accuracy for model, set test_acc_output_dim=False

python demo_mtlrobust.py

which explains why segmentation is inherently robust.

CityScape

Data preprocessing

Run python data_resize_cityscape.py to resize to smaller images.

Train Robust model against single task attack

  1. Set up the path to data in config/drn_d_22_cityscape_config.json

  2. Run cityscape_example.sh to train a main task with auxiliary task for robustness.

Taskonomy

Data Preprocessing

You can use our preprocessed data from preprocessed data

Or do from scratch

  1. Download data from official raw data.

  2. Run python data_resize_taskonomy.py to resize to smaller images.

  3. Rename segment_semantic to segmentsemantic.

Train Robust model against single task attack

  1. Set up the path to data in config/resnet18_taskonomy_config.json

  2. Run taskonomy_example.sh to train a main task with auxiliary task for robustness. For different task, we have different different setup, refer to our paper and supplementary for details.

Model evaluation

We offer our pretrained models to download here: Cityscapes segmentation depth and Taskonomy taskonomy segmentation demo

After setting up the path to your downloaded models in test_cityscapes_seg.py and test_taskonomy_seg.py,

Run python test_cityscapes_seg.py and python test_taskonomy_seg.py for evaluating the robustness of multitask models under single task attacks.

Pretrained models for other tasks for Taskonomy can be downloaded [here, comming soon](comming soon)

Acknowledgement

Our code refer the code at: https://github.com/fyu/drn/blob/master/drn.py Taskonomy https://github.com/tstandley/taskgrouping,

We thank the authors for open sourcing their code.

Owner
Columbia University
Columbia University
Pyramid R-CNN: Towards Better Performance and Adaptability for 3D Object Detection

Pyramid R-CNN: Towards Better Performance and Adaptability for 3D Object Detection

61 Jan 07, 2023
Unofficial implementation of "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" (https://arxiv.org/abs/2103.14030)

Swin-Transformer-Tensorflow A direct translation of the official PyTorch implementation of "Swin Transformer: Hierarchical Vision Transformer using Sh

52 Dec 29, 2022
The Official Implementation of Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose [NIPS 2021].

Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose Release Notes The offical PyTorch implementation of Neural View Sy

Angtian Wang 20 Oct 09, 2022
A new video text spotting framework with Transformer

TransVTSpotter: End-to-end Video Text Spotter with Transformer Introduction A Multilingual, Open World Video Text Dataset and End-to-end Video Text Sp

weijiawu 67 Jan 03, 2023
Reference code for the paper CAMS: Color-Aware Multi-Style Transfer.

CAMS: Color-Aware Multi-Style Transfer Mahmoud Afifi1, Abdullah Abuolaim*1, Mostafa Hussien*2, Marcus A. Brubaker1, Michael S. Brown1 1York University

Mahmoud Afifi 36 Dec 04, 2022
A package related to building quasi-fibration symmetries

qf A package related to building quasi-fibration symmetries. If you'd like to learn more about how it works, see the brief explanation and References

Paolo Boldi 1 Dec 01, 2021
ParaGen is a PyTorch deep learning framework for parallel sequence generation

ParaGen is a PyTorch deep learning framework for parallel sequence generation. Apart from sequence generation, ParaGen also enhances various NLP tasks, including sequence-level classification, extrac

Bytedance Inc. 169 Dec 22, 2022
Implementation of Graph Convolutional Networks in TensorFlow

Graph Convolutional Networks This is a TensorFlow implementation of Graph Convolutional Networks for the task of (semi-supervised) classification of n

Thomas Kipf 6.6k Dec 30, 2022
Stochastic Extragradient: General Analysis and Improved Rates

Stochastic Extragradient: General Analysis and Improved Rates This repository is the official implementation of the paper "Stochastic Extragradient: G

Hugo Berard 4 Nov 11, 2022
A hybrid framework (neural mass model + ML) for SC-to-FC prediction

The current workflow simulates brain functional connectivity (FC) from structural connectivity (SC) with a neural mass model. Gradient descent is applied to optimize the parameters in the neural mass

Yilin Liu 1 Jan 26, 2022
Structured Edge Detection Toolbox

################################################################### # # # Structure

Piotr Dollar 779 Jan 02, 2023
Implementation of "Semi-supervised Domain Adaptive Structure Learning"

Semi-supervised Domain Adaptive Structure Learning - ASDA This repo contains the source code and dataset for our ASDA paper. Illustration of the propo

3 Dec 13, 2021
An OpenAI Gym environment for multi-agent car racing based on Gym's original car racing environment.

Multi-Car Racing Gym Environment This repository contains MultiCarRacing-v0 a multiplayer variant of Gym's original CarRacing-v0 environment. This env

Igor Gilitschenski 56 Nov 01, 2022
A unified 3D Transformer Pipeline for visual synthesis

Overview This is the official repo for the paper: NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion. NÜWA is a unified multimodal p

Microsoft 2.6k Jan 06, 2023
Pytorch implementation of "Forward Thinking: Building and Training Neural Networks One Layer at a Time"

forward-thinking-pytorch Pytorch implementation of Forward Thinking: Building and Training Neural Networks One Layer at a Time Requirements Python 2.7

Kim Heecheol 65 Oct 06, 2022
Books, Presentations, Workshops, Notebook Labs, and Model Zoo for Software Engineers and Data Scientists wanting to learn the TF.Keras Machine Learning framework

Books, Presentations, Workshops, Notebook Labs, and Model Zoo for Software Engineers and Data Scientists wanting to learn the TF.Keras Machine Learning framework

Google Cloud Platform 792 Dec 28, 2022
CVPR 2021 Challenge on Super-Resolution Space

Learning the Super-Resolution Space Challenge NTIRE 2021 at CVPR Learning the Super-Resolution Space challenge is held as a part of the 6th edition of

andreas 104 Oct 26, 2022
Code for IntraQ, PyTorch implementation of our paper under review

IntraQ: Learning Synthetic Images with Intra-Class Heterogeneity for Zero-Shot Network Quantization paper Requirements Python = 3.7.10 Pytorch == 1.7

1 Nov 19, 2021
This is the official implement of paper "ActionCLIP: A New Paradigm for Action Recognition"

This is an official pytorch implementation of ActionCLIP: A New Paradigm for Video Action Recognition [arXiv] Overview Content Prerequisites Data Prep

268 Jan 09, 2023
Deep learning with TensorFlow and earth observation data.

Deep Learning with TensorFlow and EO Data Complete file set for Jupyter Book Autor: Development Seed Date: 04 October 2021 ISBN: (to come) Notebook tu

Development Seed 20 Nov 16, 2022