Demonstrates iterative FGSM on Apple's NeuralHash model.

Overview

apple-neuralhash-attack

Demonstrates iterative FGSM on Apple's NeuralHash model.

TL;DR: It is possible to apply noise to CSAM images and make them look like regular images to the NeuralHash model. The noise does degrade the CSAM image (see samples). But this was achieved without tuning learning rate and there are more refined attacks available too.

Example

Here is an example that uses a Grumpy Cat image in place of a CSAM image. The attack adds noise to the Grumpy Cat image and makes the model see it as a Doge image.

As a result, both of these images have the same neural hash of 11d9b097ac960bd2c6c131fa, computed via ONNX Runtime, with the script by AsuharietYgvar/AppleNeuralHash2ONNX.

doge adv_cat

More generally, because the attack optimizes the model output, the adversarial image will generate largely the same hash as the good image, regardless of the seed.

Instructions

Get ONNX model

Obtain the ONNX model from AsuharietYgvar/AppleNeuralHash2ONNX. You should have a path to a model.onnx file.

Convert ONNX model to TF model

Then convert the ONNX model to a Tensorflow model by first installing the onnx_tf library via onnx/onnx-tensorflow. Then run the following:

python3 convert.py -o /path/to/model.onnx

This will save a Tensorflow model to the current directory as model.pb.

Run adversarial attack

Finally, run the adversarial attack with the following:

python3 nnhash_attack.py --seed /path/to/neuralhash_128x96_seed1.dat

Other arguments:

-m           Path to Tensorflow model (defaults to "model.pb")
--good       Path to good image (defaults to "samples/doge.png")
--bad        Path to bad image (defaults to "samples/grumpy_cat.png")
--lr         Learning rate (defaults to 3e-1)
--save_every Save every interval (defaults to 2000)

This will save generated images to samples/iteration_{i}.png.

Note that the hash similarity may decrease initially before increasing again.

Also, for the sample images and with default parameters, the hash was identical after 28000 iterations.

Terminal output:

# Some Tensorflow boilerplate...
Iteration #2000: L2-loss=134688, Hash Similarity=0.2916666666666667
Good Hash: 11d9b097ac960bd2c6c131fa
Bad Hash : 20f1089728150af2ca2de49a
Saving image to samples/iteration2000.png...
Iteration #4000: L2-loss=32605, Hash Similarity=0.41666666666666677
Good Hash: 11d9b097ac960bd2c6c131fa
Bad Hash : 20d9b097ac170ad2cfe170da
Saving image to samples/iteration4000.png...
Iteration #6000: L2-loss=18547, Hash Similarity=0.4166666666666667
Good Hash: 11d9b097ac960bd2c6c131fa
Bad Hash : 20d9b097ac170ad2c7c1f0de
Saving image to samples/iteration6000.png...

Credit

Owner
Lim Swee Kiat
Lim Swee Kiat
DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism (SVS & TTS); AAAI 2022; Official code

DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism This repository is the official PyTorch implementation of our AAAI-2022 paper, in

Jinglin Liu 803 Dec 28, 2022
Pretrained Pytorch face detection (MTCNN) and recognition (InceptionResnet) models

Face Recognition Using Pytorch Python 3.7 3.6 3.5 Status This is a repository for Inception Resnet (V1) models in pytorch, pretrained on VGGFace2 and

Tim Esler 3.3k Jan 04, 2023
The code succinctly shows how our ensemble learning based on deep learning CNN is used for LAM-avulsion-diagnosis.

deep-learning-LAM-avulsion-diagnosis The code succinctly shows how our ensemble learning based on deep learning CNN is used for LAM-avulsion-diagnosis

1 Jan 12, 2022
Libraries, tools and tasks created and used at DeepMind Robotics.

Libraries, tools and tasks created and used at DeepMind Robotics.

DeepMind 270 Nov 30, 2022
A vision library for performing sliced inference on large images/small objects

SAHI: Slicing Aided Hyper Inference A vision library for performing sliced inference on large images/small objects Overview Object detection and insta

Open Business Software Solutions 2.3k Jan 04, 2023
X-VLM: Multi-Grained Vision Language Pre-Training

X-VLM: learning multi-grained vision language alignments Multi-Grained Vision Language Pre-Training: Aligning Texts with Visual Concepts. Yan Zeng, Xi

Yan Zeng 286 Dec 23, 2022
Tensorflow 2.x based implementation of EDSR, WDSR and SRGAN for single image super-resolution

Single Image Super-Resolution with EDSR, WDSR and SRGAN A Tensorflow 2.x based implementation of Enhanced Deep Residual Networks for Single Image Supe

Martin Krasser 1.3k Jan 06, 2023
PyTorch implementaton of our CVPR 2021 paper "Bridging the Visual Gap: Wide-Range Image Blending"

Bridging the Visual Gap: Wide-Range Image Blending PyTorch implementaton of our CVPR 2021 paper "Bridging the Visual Gap: Wide-Range Image Blending".

Chia-Ni Lu 69 Dec 20, 2022
Monitor your ML jobs on mobile devices📱, especially for Google Colab / Kaggle

TF Watcher TF Watcher is a simple to use Python package and web app which allows you to monitor 👀 your Machine Learning training or testing process o

Rishit Dagli 54 Nov 01, 2022
QR2Pass-project - A proof of concept for an alternative (passwordless) authentication system to a web server

QR2Pass This is a proof of concept for an alternative (passwordless) authenticat

4 Dec 09, 2022
This repo contains the pytorch implementation for Dynamic Concept Learner (accepted by ICLR 2021).

DCL-PyTorch Pytorch implementation for the Dynamic Concept Learner (DCL). More details can be found at the project page. Framework Grounding Physical

Zhenfang Chen 31 Jan 06, 2023
Deep Reinforcement Learning with pytorch & visdom

Deep Reinforcement Learning with pytorch & visdom Sample testings of trained agents (DQN on Breakout, A3C on Pong, DoubleDQN on CartPole, continuous A

Jingwei Zhang 783 Jan 04, 2023
PantheonRL is a package for training and testing multi-agent reinforcement learning environments.

PantheonRL is a package for training and testing multi-agent reinforcement learning environments. PantheonRL supports cross-play, fine-tuning, ad-hoc coordination, and more.

Stanford Intelligent and Interactive Autonomous Systems Group 57 Dec 28, 2022
Implementation of Retrieval-Augmented Denoising Diffusion Probabilistic Models in Pytorch

Retrieval-Augmented Denoising Diffusion Probabilistic Models (wip) Implementation of Retrieval-Augmented Denoising Diffusion Probabilistic Models in P

Phil Wang 55 Jan 01, 2023
Repository for XLM-T, a framework for evaluating multilingual language models on Twitter data

This is the XLM-T repository, which includes data, code and pre-trained multilingual language models for Twitter. XLM-T - A Multilingual Language Mode

Cardiff NLP 112 Dec 27, 2022
Pytorch version of VidLanKD: Improving Language Understanding viaVideo-Distilled Knowledge Transfer

VidLanKD Implementation of VidLanKD: Improving Language Understanding via Video-Distilled Knowledge Transfer by Zineng Tang, Jaemin Cho, Hao Tan, Mohi

Zineng Tang 54 Dec 20, 2022
Adversarial Adaptation with Distillation for BERT Unsupervised Domain Adaptation

Knowledge Distillation for BERT Unsupervised Domain Adaptation Official PyTorch implementation | Paper Abstract A pre-trained language model, BERT, ha

Minho Ryu 29 Nov 30, 2022
Here is the implementation of our paper S2VC: A Framework for Any-to-Any Voice Conversion with Self-Supervised Pretrained Representations.

S2VC Here is the implementation of our paper S2VC: A Framework for Any-to-Any Voice Conversion with Self-Supervised Pretrained Representations. In thi

81 Dec 15, 2022
Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity

[ICLR 2022] Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity by Shiwei Liu, Tianlong Chen, Zahra Atashgahi, Xiaohan Chen, Ghada Sokar, Elen

VITA 18 Dec 31, 2022
A deep-learning pipeline for segmentation of ambiguous microscopic images.

Welcome to Official repository of deepflash2 - a deep-learning pipeline for segmentation of ambiguous microscopic images. Quick Start in 30 seconds se

Matthias Griebel 39 Dec 19, 2022