A self-supervised 3D representation learning framework named viewpoint bottleneck.

Overview

Pointly-supervised 3D Scene Parsing with Viewpoint Bottleneck

Paper

Created by Liyi Luo, Beiwen Tian, Hao Zhao and Guyue Zhou from Institute for AI Industry Research (AIR), Tsinghua University, China.


result2

result3

result4

result5

result6

Introduction

Semantic understanding of 3D point clouds is important for various robotics applications. Given that point-wise semantic annotation is expensive, in our paper, we address the challenge of learning models with extremely sparse labels. The core problem is how to leverage numerous unlabeled points.

In this repository, we propose a self-supervised 3D representation learning framework named viewpoint bottleneck. It optimizes a mutual-information based objective, which is applied on point clouds under different viewpoints. A principled analysis shows that viewpoint bottleneck leads to an elegant surrogate loss function that is suitable for large-scale point cloud data. Compared with former arts based upon contrastive learning, viewpoint bottleneck operates on the feature dimension instead of the sample dimension. This paradigm shift has several advantages: It is easy to implement and tune, does not need negative samples and performs better on our goal down-streaming task. We evaluate our method on the public benchmark ScanNet, under the pointly-supervised setting. We achieve the best quantitative results among comparable solutions. Meanwhile we provide an extensive qualitative inspection on various challenging scenes. They demonstrate that our models can produce fairly good scene parsing results for robotics applications.

Citation

If you find our work useful in your research, please consider citing:

@misc{

} 

Preparation

Requirements

  • Python 3.6 or higher
  • CUDA 11.1

It is strongly recommended to proceed in a virtual environment (venv, conda)

Installation

Clone the repository and install the rest of the requirements

git clone https://github.com/OPEN-AIR-SUN/ViewpointBottleneck/
cd ViewpointBottlencek

# Uncomment following commands to create & activate a conda env
# conda create -n env_name python==3.8
# conda activate env_name

pip install -r requirements.txt

Data Preprocess

  1. Download ScanNetV2 dataset and data-efficient setting HERE .

  2. Extract point clouds and annotations by running

# From root of the repo
# Fully-supervised:
python data_preprocess/scannet.py

# Pointly supervised:
python data_preprocess/scannet_eff.py

Pretrain the model

# From root of the repo
cd pretrain/
chmod +x ./run.sh
./run.sh

You can modify some details with environment variables:

SHOTS=50 FEATURE_DIM=512 \
LOG_DIR=logs \
PRETRAIN_PATH=actual/path/to/pretrain.pth \
DATASET_PATH=actual/directory/of/dataset \
./run.sh

Fine-tune the model with pretrained checkpoint

# From root of the repo
cd finetune/
chmod +x ./run.sh
./run.sh

You can modify some details with environment variables:

SHOTS=50 \
LOG_DIR=logs \
PRETRAIN_PATH=actual/path/to/pretrain.pth \
DATASET_PATH=actual/directory/of/dataset \
./run.sh

Model Zoo

Pretrained Checkpoints Feature Dimension 256 512 1024
Final checkpoints
mIOU(%) on val split
Supervised points
20 56.2 57.0 56.3
50 63.3 63.6 63.7
100 66.5 66.8 66.5
200 68.4 68.5 68.4

Acknowledgements

We appreciate the work of ScanNet and SpatioTemporalSegmentation.

We are grateful to Anker Innovations for supporting this project.

Extract MNIST handwritten digits dataset binary file into bmp images

MNIST-dataset-extractor Extract MNIST handwritten digits dataset binary file into bmp images More info at http://yann.lecun.com/exdb/mnist/ Dependenci

Omar Mostafa 6 May 24, 2021
[NeurIPS 2021] Code for Unsupervised Learning of Compositional Energy Concepts

Unsupervised Learning of Compositional Energy Concepts This is the pytorch code for the paper Unsupervised Learning of Compositional Energy Concepts.

45 Nov 30, 2022
CapsuleVOS: Semi-Supervised Video Object Segmentation Using Capsule Routing

CapsuleVOS This is the code for the ICCV 2019 paper CapsuleVOS: Semi-Supervised Video Object Segmentation Using Capsule Routing. Arxiv Link: https://a

53 Oct 27, 2022
Framework for joint representation learning, evaluation through multimodal registration and comparison with image translation based approaches

CoMIR: Contrastive Multimodal Image Representation for Registration Framework 🖼 Registration of images in different modalities with Deep Learning 🤖

Methods for Image Data Analysis - MIDA 55 Dec 09, 2022
Source for the paper "Universal Activation Function for machine learning"

Universal Activation Function Tensorflow and Pytorch source code for the paper Yuen, Brosnan, Minh Tu Hoang, Xiaodai Dong, and Tao Lu. "Universal acti

4 Dec 03, 2022
🦙 LaMa Image Inpainting, Resolution-robust Large Mask Inpainting with Fourier Convolutions, WACV 2022

🦙 LaMa Image Inpainting, Resolution-robust Large Mask Inpainting with Fourier Convolutions, WACV 2022

Advanced Image Manipulation Lab @ Samsung AI Center Moscow 4.7k Dec 31, 2022
ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectives

Status: Under development (expect bug fixes and huge updates) ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectiv

37 Dec 28, 2022
A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generative Modeling" (ICCV 2021)

Manifold Matching via Deep Metric Learning for Generative Modeling A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generat

69 Dec 10, 2022
A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model.

Semantic Meshes A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model. Paper If you find this framework usefu

Florian 40 Dec 09, 2022
This repository contains the implementation of the HealthGen model, a generative model to synthesize realistic EHR time series data with missingness

HealthGen: Conditional EHR Time Series Generation This repository contains the implementation of the HealthGen model, a generative model to synthesize

0 Jan 20, 2022
Open-Set Recognition: A Good Closed-Set Classifier is All You Need

Open-Set Recognition: A Good Closed-Set Classifier is All You Need Code for our paper: "Open-Set Recognition: A Good Closed-Set Classifier is All You

194 Jan 03, 2023
Simple Python project using Opencv and datetime package to recognise faces and log attendance data in a csv file.

Attendance-System-based-on-Facial-recognition-Attendance-data-stored-in-csv-file- Simple Python project using Opencv and datetime package to recognise

3 Aug 09, 2022
Notebooks for my "Deep Learning with TensorFlow 2 and Keras" course

Deep Learning with TensorFlow 2 and Keras – Notebooks This project accompanies my Deep Learning with TensorFlow 2 and Keras trainings. It contains the

Aurélien Geron 1.9k Dec 15, 2022
This repository contains the source code for the paper Tutorial on amortized optimization for learning to optimize over continuous domains by Brandon Amos

Tutorial on Amortized Optimization This repository contains the source code for the paper Tutorial on amortized optimization for learning to optimize

Meta Research 144 Dec 26, 2022
GeneralOCR is open source Optical Character Recognition based on PyTorch.

Introduction GeneralOCR is open source Optical Character Recognition based on PyTorch. It makes a fidelity and useful tool to implement SOTA models on

57 Dec 29, 2022
A Pytorch implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE

SMU_pytorch A Pytorch Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE arXiv https://arxiv.org/ab

Fuhang 36 Dec 24, 2022
Poplar implementation of "Bundle Adjustment on a Graph Processor" (CVPR 2020)

Poplar Implementation of Bundle Adjustment using Gaussian Belief Propagation on Graphcore's IPU Implementation of CVPR 2020 paper: Bundle Adjustment o

Joe Ortiz 34 Dec 05, 2022
SIEM Logstash parsing for more than hundred technologies

LogIndexer Pipeline Logstash Parsing Configurations for Elastisearch SIEM and OpenDistro for Elasticsearch SIEM Why this project exists The overhead o

146 Dec 29, 2022
This is a TensorFlow implementation for C2-Rec

This is a TensorFlow implementation for C2-Rec We refer to the repo SASRec. Requirements requirement.txt Datasets This repo includes Amazon Beauty dat

7 Nov 14, 2022
code for our paper "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer"

SHOT++ Code for our TPAMI submission "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer" that is ext

75 Dec 16, 2022